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POSTER:POWERING MULTI-TASK FEDERATED LEARNING WITH
COMPETITIVE GPU RESOURCE SHARING

ABSTRACT
Federated learning (FL) nowadays involves heterogeneous compound learning tasks as cognitive applications’
complexity increases. For example, a self-driving system hosts multiple tasks simultaneously (e.g., detection,
classification, segmentation, etc.) and expects FL to retain life-long intelligence involvement. However, our
analysis demonstrates that, when deploying compound FL models for multiple training tasks on a GPU, certain
issues arise: (1) As different tasks’ skewed data distributions and corresponding models cause highly imbalanced
learning workloads, current GPU scheduling methods lack effective resource allocations; (2) Therefore, existing
FL schemes, only focusing on heterogeneous data distribution but runtime computing, cannot practically achieve
optimally synchronized federation. To address these issues, we propose a full-stack FL optimization scheme to
address both intra-device GPU scheduling and inter-device FL coordination for multi-task training. Specifically,
our works illustrate two key insights in this research domain: (1) Competitive resource sharing is beneficial for
parallel model executions, and the proposed concept of “virtual resource” could effectively characterize and
guide the practical per-task resource utilization and allocation. (2) FL could be further improved by taking
architectural level coordination into consideration. Experiments show that we could greatly enhance the GPU
resource utilization, and in turn improve the overall intra-device training throughput by 2.16×∼2.38× and
inter-device FL coordination throughput by 2.53×∼2.80× in complex multi-task FL scenarios.

1 INTRA-DEVICE GPU SCHEDULING
WITH COMPETITIVE RESOURCE SHARING

We propose a GPU computational scheduling method with
competitive resource sharing.

Fig. 1 1⃝ indicates a fully isolated spatial resource allocation,
which is a very recent GPU scheduling technique to resolve
resource interference (e.g., MPS (Nvidia, 2021)).

Instead of fully spatial isolation, we could also enable dif-
ferent tasks to share certain resources and enable the com-
petitive sharing. This could be done by assigning virtual
resources to each individual task, which could accumulate
to exceed 100% physical GPU resources. The exceeded
resources come from the resource sharing between tasks, as
shown in Fig. 1 2⃝.

However, excessive shared resources can also bring resource
contention, which undermines the advantage of resource
sharing. Fig. 1 3⃝ gives an example of this case. The last
case is fully sharing the GPU resource without partitioning,
which leads to extreme competitions and results in fully
sequential execution in certain cases. In Fig. 1 4⃝, task-A
and task-B, when running large-volume operators, the GPU
scheduler can alter the spatial sharing-based execution to
the time slicing-based execution, in which one task will take
all the resources in its duration.

Through identifying competitive resource sharing, we find
controlling an appropriate degree of resource competition

and sharing is the key to achieve the optimal GPU perfor-
mance.

When using competitive resource sharing to deploy com-
plex multi-tasks in GPU, we propose a machine learning
approach to estimate throughput based on a given tasks’
combination of and the virtual resource allocation for each
task (Yeung et al., 2021).

2 INTER-DEVICE MULTI-TASK
FEDERATED LEARNING COORDINATION

Based on the intra-device virtual resource management, we
further bring it into the inter-device FL cluster and rethink
the FL coordination from a GPU scheduling perspective.

Our goals are to make each device could be fully utilized
during each synchronization cycle when multi-task models
parallel in each device, and meanwhile maximize the overall
GPU throughput to accelerate the overall FL training speed.

We achieve the first goal through adjusting mismatch be-
tween the ratio of different tasks’ data volume D and the
ratio of different tasks’ workload O. For the second goal,
we adjust the resource allocation according to the workload
which is influenced by batch size to obtain the maximum
throughput. And the goals can be formulated by the follow-
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Figure 1. Competitive GPU Resource Sharing with Multi-Task
DNN Training

ing objectives: Objective 1 : min
∑

i

∑
j

|Di|
|Dj |

− Oi
Oj

,

Objective 2 : max
∑

i
P1, .., Pi.

(1)

For the first objective, we can understand its principle using
the relation between D and O. When a task model has larger
data volume D, we improve its workload through increasing
batch size to make this task model occupy more resource,
so that this task model can consume correspondingly more
amount of data during each synchronization cycle. There-
fore, achieving co-scheduling of the multi-task FL coor-
dination can be transformed into leveraging the workload
adjustment and resource allocation to satisfy the above two
objectives. We adopt a greed optimization method to find
the optimal workload and resource allocation.

3 EXPERIMENTAL EVALUATION

Experimental Setup: We construct various multi-task
scenarios with following DNN models: VGG16 (V16),
ResNet18 (R18), ResNet50 (R50), ResNet101 (R101) Mo-
bileNet v3 (M3), ShuffleNet v2 (S2) DensNet121 (D121).
We evaluate three multi-task settings on the CIFAR10
dataset and use the NVIDIA Titan V GPU.

We use raw throughput and fairness throughput to evaluate
the performance. All methods’ throughput are normalized
to show the relative acceleration ratio.

Overall Speed-up: Our resource allocation method could
consistently yield 2.16× to 2.38× speed-up. Inter-Device
Multi-task FL Coordination: We use a FL system with

1 1 1
1.75 1.82 1.79

2.06 1.85 1.8
2.26 2.12 2.24

0

1

2

3

D121+V16+R101 R18+M3+S2 R50+V16+M3

A
cc

el
er

at
io

n 
R

at
io

Temporal Fully isolated Fully sharing Ours

(a) Throughput

(b) Fairness Throughput

1 1 1
1.7 1.65 1.731.85 1.87 1.72

2.16 2.23 2.38

0

1

2

3

D121+V16+R101 R18+M3+S2 R50+V16+M3

A
cc

el
er

at
io

n 
R

at
io

Figure 2. Throughput Advantages.

several devices, each devices have three tasks with different
model structure and imbalance data volume. We give the
the average throughout and fairness throughput in one syn-
chronization cycle of all devices, and the results show in the
Fig. 3. From the Fig. 3, we can find that we achieve 2.53×
to 2.80× speed-up compared to the baseline methods.
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Figure 3. Inter-Device Average Throughput in a Federated Learn-
ing Synchronization Cycle

4 CONCLUSION

In this work, we propose a full-stack multi-task FL opti-
mization scheme, which addresses both intra-device GPU
scheduling with a novel competitive resource sharing
scheme; and inter-device multi-task FL coordination with
realistic GPU runtime synchronization. Experiments show
that we could greatly enhance the GPU resource utilization,
and improve the overall training throughput.
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