
POSTER: UNDERSTANDING RESOURCE REQUIREMENTS OF FL ALGORITHMS

Sepehr Delpazir 1 Ali Anwar 2 Nathalie Baracaldo 2 Khalil Al-Hussaeni 1

ABSTRACT
Federated Learning (FL) is an approach to ML that allows training a model without having to gather all the data at
one place. In FL, training happens at the data source (clients) and a central server (aggregator) is used to combine
the trained models using a fusion algorithm to generate a global model. While doing FL to train a model, it is
important to know how much system resources such as CPU and memory needs to be reserved as processing often
happens on resource constrained setups. Moreover, understanding which fusion algorithms works best with which
models can also help in improving the final model accuracy. To this end, in this paper, we perform an in depth
analysis of several FL training processes to understand the resource usage of both the aggregator and client sides.

1 INTRODUCTION

Data privacy, security, and confidentiality are important as-
pects for the users of Machine Learning (ML). Federated
Learning (FL) safeguards the parties’ data and ensures the
privacy and confidentiality by leveraging distributed sys-
tems. In FL, multiple number of clients collaboratively train
a model by first doing local training, and then passing on
the results to a central server called aggregator where the
local models are fused into an updated global model. Unlike
traditional ML, FL does not allow for the raw data to be
communicated due to privacy reasons. This ensures every
client’s data stays private and confidential throughout the
training. While using FL to train a model, it is especially
important for the individual clients to be aware of the re-
source requirements since most of the training happens in a
resource constrained environment. Different algorithms use
up different amounts of system resources and being aware
of the CPU and memory usage is essential for ensuring that
a smooth training process takes place.

To best of our knowledge, there is no research available that
explores the system resource requirements for running FL
algorithms. There is a lack of empirical analysis that high-
lights resource requirements of a machine/device attempting
to run FL. It is necessary for resource-constrained machines
to have a reference of what to expect when training against

1Department of Computer Sciences, Rochester Institute of
Technology Dubai, UAE 2IBM Research, Almaden, CA, USA.
Correspondence to: Sepehr Delpazir <sd3290@rit.edu>, Ali An-
war <ali.anwr2@ibm.com>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

% CPU / % Memory Usage - IoT/Edge Setting
Fusion Algorithm MNIST ADULT CIFAR-10

FedAvg 3.8 / 94 -
Keras Classifier 4.4 / 94 - 3.4 / 86.34

Sklearn Logistic Class. 4.7 / 86 2.5 / 86 -
Coordinate Median 6.0 / 95 - -

Keras Gradient 9.9 / 98 - -
Zeno 10.5 / 97 - -

Naive Bayes - 2.1 / 86 -

Table 1. % CPU and % memory usage while training Keras-based
models for IoT/Edge setup for different data sets. We studied only
those combinations that IBMFL supported.

different fusion algorithms.

In this paper, we study the system resource requirements
of FL. We run multiple experiments in an effort to better
understand the CPU and memory usage of training different
datasets when combined with multiple fusion algorithms.
The results of these experiments will hopefully give the
users of FL a better idea of what to expect when training a
model on their resource-constrained setups.

2 OUR APPROACH AND INSIGHTS

We perform an empirical analysis of resource usage while
running IBMFL (Ludwig et al., 2020) on both IoT/Edge
as well as enterprise setting. The experiments that we’ve
carried out have been conducted on two sets of devices;
Edge setting: Jetson AGX Xavier Developer Kit (Nvidia,
2018) powered by the NVIDIA Xavier processor. These
nodes have an Aarch64 architecture, 512 core Volta GPU,
an 8-core 64-bit CPU, and a 32GB memory capacity. Our
setup included one aggregator node and six client side nodes.
Enterprise setting: Lenovo ThinkPad desktop powered by
the Intel Core i5 x64-based processor. This host has an
8GB RAM and is a type 64-bit operating system. This setup
included one aggregator and two clients.



Poster: Understanding Resource Requirements of FL Algorithms

% CPU / Memory (MB) Usage - Enterprise Setting
Fusion Algorithm Keras Pytorch SKlearn

FedAvg 3.2 / 320 - -
Coordinate Median 3.8 / 363 5.6 / 370 1.9 / 270

Iterative Avg. 3.5 / 372 - -
Shuffle Iterative Avg. 3.2 / 372 - -

PFNM 24.1 /320 32 / 313 -
Zeno 6.5 / 444 - -
Krum 5.5 / 350 - -

Table 2. % CPU and absolute memory (MB) usage while training
the MNIST data set for enterprise setup for different underlying
ML frameworks. For Pytorch and Sklearn models, we studied only
those fusion algorithms that IBMFL supported.

% CPU / % Memory Usage - IoT/Edge Setting
Model MNIST ADULT
Keras 5.14 / 98 -

Sklearn 2 / 48 -
Naive Bayes - 11.39 / 54

Table 3. Client side % CPU and % memory usage for IoT/Edge
setup for different data sets.

We use 3 different datasets MNIST (Deng, 2012), Cifar-
10 (Krizhevsky, 2009), and Adult dataset (Dua & Graff,
2017). For Aggregator side we use FedAvg (McMahan
et al., 2017), Keras Classifier, Sklearn Logistic Classifier,
Coordinate Median (Yin et al., 2018), Keras Gradient Ag-
gregation, PFNM (Yurochkin et al., 2019) and Zeno (Xie
et al., 2019) fusion algorithms.

Table 1 reports CPU and memory usage of the Aggrega-
tor side for IoT/Edge setup when training three different
datasets for studied fusion algorithms. We observe that com-
plex fusion algorithms like Zeno require almost 3x more
CPU than simple fusion algorithms (e.g., FedAvg) even for
a smaller dataset such as MNIST. We also observe memory
usage increase for complex algorithms. Similarly, Table 2
shows CPU and memory usage for different model types
for studied fusion algorithms under enterprise setup. For
this experiment we use simple MNIST dataset and again
observe the same trend.

When it comes to collecting CPU and memory usages on
the client side, different fusion algorithms within the same
FL model do not affect the system metrics differently. As a
result, a singular fusion algorithm from each model (FedAvg
for Keras, Sklearn Logistic Classifier for Sklearn, Naive
Bayes Classifier for Naive Bayes) is chosen and the metrics
are collected. As shown in Table 3, training MNIST dataset
with Keras requires almost 100% more resources compared
to Sklearn.

Insights: Our findings from the carried out experiments
yield interesting results which include:

• There are major differences in CPU usage of fusion
algorithms such as Fedavg uses half the CPU compared
to PFNM on the aggregator side;

• Using different underlying ML framework/model re-
sults in a noticeable difference in memory usage. For
example, Sklearn with Logistic Classification requires
10% less memory compared to Keras-based Gradient
Aggregation;

• There is a huge fluctuations in CPU usage for different
fusion algorithms. For example, Naive Bayes requires
double the CPU usage compared to Keras with FedAvg
on the client side;

• There are major differences in memory usage as well
such as Keras-based Fedavg requires 100% more mem-
ory compared to Sklearn-based Logistic Classification
on the client side.

REFERENCES

Deng, L. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Krizhevsky, A. Learning multiple layers of features from
tiny images. 2009.

Ludwig, H., Baracaldo, N., Thomas, G., Zhou, Y., Anwar,
A., Rajamoni, S., Ong, Y., Radhakrishnan, J., Verma,
A., Sinn, M., et al. Ibm federated learning: an en-
terprise framework white paper v0. 1. arXiv preprint
arXiv:2007.10987, 2020.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Nvidia, N. Jetson AGX Xavier Developer Kit User
Guide — Nvidia developer, Sep 2018. URL https:
//developer.nvidia.com/embedded/dlc/
jetson-agx-xavier-developer-kit-user-guide.

Xie, C., Koyejo, S., and Gupta, I. Zeno: Distributed stochas-
tic gradient descent with suspicion-based fault-tolerance.
In International Conference on Machine Learning, pp.
6893–6901. PMLR, 2019.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Byzantine-
robust distributed learning: Towards optimal statistical
rates. In International Conference on Machine Learning,
pp. 5650–5659. PMLR, 2018.

Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K.,
Hoang, N., and Khazaeni, Y. Bayesian nonparametric
federated learning of neural networks. In International
Conference on Machine Learning. PMLR, 2019.

http://archive.ics.uci.edu/ml
https://developer.nvidia.com/embedded/dlc/jetson-agx-xavier-developer-kit-user-guide
https://developer.nvidia.com/embedded/dlc/jetson-agx-xavier-developer-kit-user-guide
https://developer.nvidia.com/embedded/dlc/jetson-agx-xavier-developer-kit-user-guide

