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ABSTRACT
In Federated Learning (FL), nodes are orders of magnitude more constrained than traditional server-grade
hardware and are often battery powered, severely limiting the sophistication of models that can be trained under
this paradigm. While most research has focused on designing better aggregation strategies to improve convergence
rates and alleviate the communication costs of FL, fewer efforts have been devoted to accelerating on-device
training. Such stage, which repeats hundreds of times (i.e. every round) and can involve thousands of devices,
accounts for the majority of the time required to train federated models and, the totality of the energy consumption
at the client side. In this work, we present the first study on the unique aspects that arise when introducing sparsity
at training time in FL workloads. We then propose ZeroFL, a framework that relies on highly sparse operations
to accelerate on-device training and achieves +2.3% and +1.5% higher accuracy at 90% and 95% sparsity ratios.

1 INTRODUCTION

In order to adjust the memory and compute footprints of
complex ML models to the FL setting, the research commu-
nity has presented a number of approaches including: the
use of distillation (Zhu et al., 2021); federated dropout (Cal-
das et al., 2019); and, aggregation strategies that enable
faster convergence (Li et al., 2018; Reddi et al., 2021). Other
optimization techniques such as quantization and sparsity
have been considered to reduce communication costs (Amiri
et al., 2020) but not to accelerate on-device training.

The use of sparse operations at training time has recently
been shown to be an effective technique to accelerate train-
ing in centralised settings (Goli & Aamodt, 2020; Raihan &
Aamodt, 2020). The resulting models are as good or close
to their densely-trained counterparts despite reducing by
up to 90% their FLOPs budget and, resulting in an overall
up to 3.3 training speedup. Acceleration is achieved by
performing sparse convolutions during the forward and/or
backward pass, which requires at least one of the operands
(i.e. inputs, weights, gradients) to be sufficiently sparse and,
software and hardware support for such operations. How-
ever, it is unclear how the different FL-specific challenges
(i.e. data imbalance, stateless clients, periodic aggregation)
will restrict the quality of the global model.

This work considers the challenges and opportunities of
inducing high levels of sparsity to accelerate training on-
device for FL workloads, and provides the following contri-
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butions: (1) A study on the unique aspects that arise when
introducing sparsity at training time; (2) ZeroF L, a method
that alleviates the accuracy degradation when applying a
state-of-the-art off-the-shelf sparsification method to the
FL domain; (3) a comprehensive analysis on CIFAR-10,
FEMNIST (Caldas et al., 2018) and Speech Commands
datasets (Warden, 2018) in terms of model performance and
communication costs.

2 SPARSE TRAINING FOR FL

The ZeroFL formulation builds upon SWAT (Raihan &
Aamodt, 2020) and introduces a masking mechanism more
suitable to the FL setting. The SWAT framework operates
as follows: During each forward pass, the weights are par-
titioned into active weights and non-active weights by a
top-K (in magnitude) operator and only the active weights
are used. Similarly in the backward pass, the retained layer
inputs a;_; are also partitioned into active and non-active
by using the same top—K procedure. This results in full
and dense gradients being used to compute the gradients
w.r.t inputs (using sparse active weights) and w.r.t the layer
weights (using sparse active retained inputs). The resulting
gradients are dense. Therefore, the resulting model remains
dense. Due to the data heterogeneity between clients in
FL, performance of training using vanilla SWAT degrades
significantly compared to centralised training as shown in
our poster.

ZeroFL also proposes to not send the entire model weights
to the central server for aggregation, since only the t op—K
active are required in the forward during inference time. By
investigating the position of the t op—K active weights, we
found that the position of majority of the t op—K weights
remain the same throughout the training process. There-
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fore, ZeroFL introduces a masking mechanism by vary-
ing the mask ratio that determined how much weights are
communicated from client to the server. In this way, the
communication cost is saved, and it can also reduce the
training noise induced by local data heterogeneity among
clients. Let sp be the level of sparsity in the local training
and 7,455 be the mask ratio for communication. Then the
client only communicate the top-(1 — sp+7,4s%) of weights
to the server for aggregation. By reducing the amount of
weight communicated, it also reduces noise resulting from
the heterogeneous data distribution among different clients.

3 EVALUATION

We conduct our experiments using Flower toolkit (Beutel
et al., 2020) on CIFAR10, FEMNIST and Speech Com-
mands datasets. We follow the latent Dirichlet allocation
(LDA) partition method for both CIFAR10 and Speech Com-
mands to construct the partition among a pool of 100 clients.
FEMNIST, on the other hand, is naturally partitioned by
writers’ IDs and it has 3597 total clients. We only shows
results for Non-IID partition (o« = 1 in LDA) here among
clients to better mimic the cross-device FL training in real
scenarios. For both CIFAR10 and Speech Commands, we
use Resnet-18 (He et al., 2016). For FEMNIST, we use
simple a CNN model.

This work considers accelerating the convolutions involved
during forward and backward propagation following a
top—K sparsity inducing mechanism at the weight level. As
a result, the expected sparse pattern would be unstructured,
which can only be accelerated if tensors are sufficiently
sparse. While sufficiently is mostly hardware-specific, for
the target platforms often considered in FL, we expect at
least 90% sparsity to be required. Hence, we consider 95%
sparsity ratios in our experiments.

As shown in Table 1, it is worth noticing that the masking
mechanism with ratio 0.2 performs better than vanilla SWAT,
and performance improved with mask ratios from O to 0.2,
indicating that there exist an optimal interval level. A mask
ratio of 0 degenerates the system to the vanilla SWAT, which
obtains worse results. It also implies that there is a trade-off
between communication cost and performance. By using
mask ratio of 0.2, all 3 datasets exhibits higher performance
than the baseline, where all weights are communicated from
clients to the server.

ZeroFL enables us to reduce the performance degradation
induced by high level of sparsity in the training. During
communication, sparse weight matrices can be transmitted
using the Compressed Sparse Row (CSR) format. Such
representation requires exactly one integer index for each
non-zero weight value in the model. Table 1 shows the level
of communication saving with different level of mask ratios,

Dataset Sp | Mask Full Model | Top-K-W.  File | Comms.
atase Level | Ratio NIID NIID Size | Savings
—  74.00£0.74 437 Ix
SI()]*;)A]?IO[ ) 95¢ 0.0 65.38£0.60 5.9 7.4x
chents ) 02 75.54x1.15 230 | 1.9x
Speech Com- — 81.12+0.82 43.7 1x
mands (100 95 % 0.0 64.79£3.02 59 7.4%
clients) ¢ 0.2 81.79+0.33 23.0 1.9%
— 83.34+0.41 23.0 Ix
gl:;g/gNIcsl?;nts) 95 % 0.0 76.79£0.90 1.3 17.7 x
: ? 0.2 83.78+0.19 44 52 x

Table 1. Results with ZeroFL on CIFAR10 and SpeechCommands
for the non-1ID (a=1) setting. FEMNIST is a naturally partitioned
dataset. We report the size (in MB) of the artifact to be transmitted
to the server for aggregation, which has been compressed following
the CSR sparse format representation.

which is calculated as the size ratio between original and
compressed models considering both weights and indices
in the CSR file. Our findings call for further investigations
on the device-oriented optimisation of federated learning to
motivate realistic deployments of this training methodology.
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