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ABSTRACT
The concern about mobile devices’ data privacy has motivated Federated Learning (FL) where many clients
(which are coordinated by a central server) collaboratively train a model while communicating only model updates.
However, a bottleneck might occur over the central server as the number of clients increases. This limitation
motivates existing research for decentralized FL. where clients share model updates with their neighbours instead
of the central coordinator. We present a decentralized FL algorithm with convergence guarantees that addresses
the practical challenge of the time-varying connectivity graph (e.g., neighbors are not fixed).

1 INTRODUCTION

To protect mobile clients’ privacy, Federated Learning (FL)
as shown in the left of Figure 1 is applied to train a shared
model. The centralized FL repeats broadcast, client com-
putation, and aggregation steps until training is stopped.
However, a bottleneck might occur over the central server
when operating at a larger scale. Moreover, a reliable central
server may not always exist. These limitations motivate the
need for decentralized FL.

Decentralized FL replaces primitive communication with
peer-to-peer communication where client exchanges infor-
mation with their neighbors. While distributed optimization
has been studied in the control community, decentralized
SGD has been less explored in machine learning. Fortu-
nately, Lian (2017) has validated the promising future of
decentralized SGD algorithms over centralized algorithms.

Further, mobile clients, which may expect large variations
in location, might have time-varying neighbors and thus
leading to a dynamic connectivity graph. However, little
research has considered the decentralized FL in a mobile
environment (shown in the right of Figure 1). Therefore,
we deploy a dynamic decentralized FL algorithm for the
time-varying decentralized network and obtain theoretical
convergence bounds of its performance.

2 METHOD

This section provides the dynamic decentralized FL algo-
rithm and then analyzes its convergence rate.
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Figure 1. An illustration of centralized FL and decentralized FL.
with dynamic peer-to-peer communication topology.

2.1 Dynamic Decentralized FL Algorithm

Given an undirected graph G with V := {1,2,--- ,n} rep-
resenting the set of clients, N;(k) C {1,2,---,n} denotes
the neighbors of the node 7 in the kth iteration. Then the
decentralized communication matrix £ € R™*" is defined
as in (Ram et al., 2009):

1/n j#iandj € N;(k)
Eij(k) =< 1—[N;(k)|/n j=1i
0 otherwise

Beyond an equal contribution, E;; shows how much in-
fluence client j will have on client <. Here E' is a doubly
stochastic matrix since all entries are nonnegative (E;; €
[0,1], Vi, j); the sum of each row is 1 (Ej E;; = 1,Yi);
and E' is symmetric.

Algorithm 1 shows the operation of the ¢th client under the
dynamic decentralized FL algorithm.

2.2 Convergence Rate Analysis

To provide the convergence results, we first state the conver-
gence of non-homogeneous Markov chains which has been
proved in (Nedic et al., 2008). They make two assumptions
as follows:
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Algorithm 1 Dynamic Decentralized FL on the ith Client
Input: initial point wy ; = wp, communication matrix F,
the number of iterations K
fork=0to K —1do
Randomly sample data
Update the local model wy, ; using the sampled data
Average the local model with neighbours based on the
communication matrix: w41, = 2?21 E;j(k)ws,;
end for

1. There exists an integer M > 1 such that for all
t, the graph (V,UL™Y~1e(E(k))) is strongly con-
nected, where e(E(k)) is a set of edges (¢,7) such
that E;; (k) > 0.

2. Forall k, if E;;(k) > 0 then E;;(k) > .

These assumptions guarantee that the clients are connected
frequently enough in time, and these lead to the following
Lemma:

Lemma 2.1 Under Assumption 1 & 2, for all t, | with
t > 1> 0 we have
n o\ 2
<(1- —)
- ( 4n?

Then Lemma 2.1 can be invoked in the following analysis
of (Lian et al., 2017) while keeping its existing assumptions
(lipschitzian gradient, spectral gap, bounded variance & start
from 0). In all, they can give us the subsequent convergence
results of Algorithm 1.

[EWE({—1)-- E(l)];; — %

Theorem 2.2 Under assumption 1, 2 and assumptions in
(Lian et al., 2017), if the number of iterations K is large
enough and the learning rate is wisely set, Algorithm 1 has
the same convergence rate as centralized PSGD:

o BIVIG 2 wed)l? <O<1 ! )

=+
K K  nK

3 EXPERIMENTS

We implemented the dynamic decentralized FL algorithm 1
on two benchmark MNIST and CIFAR10 datasets to verify
our theory; we train a simple CNN model and ResNet56
model from 10 and 30 clients respectively. Although the
theoretical convergence guarantee is for one local update
per iteration, we relax this assumption in the experiments
to 5 local epochs. In addition, we partition data in two
different ways: IID, where dataset was randomly partitioned
over clients; Non-IID, where each client will have examples
of only one MNIST digit or get allocated CIFAR10 using
latent dirichlet allocation.
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Figure 2. Test Accuracy in various settings.

These experiments consider two special maps: a line with
five cities of uniform spacing; a unit circle with ten evenly
distributed cities. Specifically, the motion of a mobile client
is inversely proportional to the distance between pairs of
cities. And the clients in the two adjacent cities are con-
sidered neighbors. Test accuracy in Figure 2 validate our
theory since D-FL has the same convergence rate.

4 FUTURE WORK

FL researchers typically experiment with some specific
datasets that will then be partitioned over clients. How-
ever, these datasets may be unreliable. One may generate a
dataset from virtual agents who can collect data in a virtual
world. Specifically, one could take advantage of the open-
source simulator (e.g., GTA V) to collect decentralized data.
Compared with the pre-existing FL datasets, this dataset bet-
ter conforms to the actual data because it is generated from
mobile nodes. Besides, this dataset is naturally partitioned,
thus minimizing discrepancies due to manually designed
partition methods. Furthermore, the simulator provides a
realistic modeling for the dynamic graph.
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