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ABSTRACT
In this paper, we introduce internal evasion attacks in federated learning, in which malicious federated learning
clients utilize their knowledge of their local models to craft evasion attacks on other federated learning clients
at test time. Unlike the more widely studied poisoning attacks in federated learning, malicious clients do not
interfere with the model training and only craft attacks at test time, after the training is largely complete. We
characterize the success rate of such attacks between clients for different federated learning methods, including a
new ”grey-box” setting of personalized federated learning, where client models are related but not identical. The
adversarial clients have varying degrees of information about the models of other clients. We introduce a defense
mechanism, pFedDef, that reduces the success rate of this internal attack while respecting resource limitations
at clients during training phase. Overall, pFedDef decreases internal attack success rates by 19% compared to
existing methods of federated adversarial training.

1 INTRODUCTION

Personalized federated learning builds on the federated
learning paradigm to maintain data privacy and distributely
train unique models tuned for different clients in the sys-
tem that are related but not identical (Smith et al., 2017).
The growing popularity of machine learning has fueled at-
tacks on learning algorithms. Evasion attacks (Madry et al.,
2017), for example, aim to perturb inputs to trained learning
models that are undetectable to human users but change the
model output. Slightly altering a stop sign, for example,
might lead to it being classified as a speed limit sign instead.

In this work, we provide a formalization of internal eva-
sion attacks in federated learning, as well as quantitative
evidence that these algorithms are vulnerable to such at-
tacks. We suppose that attackers can access the models
of compromised federated learning clients (e.g., by posing
as legitimate clients and training personalized models on
their own data) and perform evasion attacks to other clients.
To the best of our knowledge, this is the first evidence of
such attacks in federated learning. In the personalized feder-
ated learning case, this attack creates a “grey-box” scenario
in which attackers can utilize partial knowledge regarding
similarities between their (known) model and the victims’
(unknown) models to generate effective perturbations. The
more similar the model decision boundaries are at different
clients, the higher the potential for attack success. Prior
works introduce adversarial federated training in a non-
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personalized setting, where the goal is to gain robustness
against external ”black-box” attacks (Zizzo et al., 2020).

Our main contributions are as follows: (1) We characterize
and analyze the success of evasion attacks between clients
in different federated learning algorithms. (2) We propose
pFedDef, a defense mechanism against internal attacks that
allows us to perform adversarial training along with person-
alized federated learning for clients with limited resources.

2 INTERNAL ATTACK SUCCESS RATE IN
DISTRIBUTED LEARNING

To observe internal attack success rate for different methods
of distributed learning, we simulate attacks on models of
the Celeba dataset trained with FedEM (Marfoq et al., 2021)
personalized federated learning, FedAvg, and local training
where clients train individual models with no communica-
tion. The Celeba data set is split in a non-i.i.d. manner
across clients following the distributed learning benchmark
(Caldas et al., 2019). Success of attacks is measured by
victim client accuracy against perturbed inputs.

As seen in Table 1, the similarity between client models
during a federated learning process increases attack success
rate from adversarial to victim clients. The FedEM clients
have lower attack success rate than the FedAvg clients, likely
due to the differences between client models caused by
personalization. All clients have the same model in FedAvg.
Personalized learning (FedEM) achieves high test accuracy
relative to local training through the sharing of information
during the training process, while showing traces of innate
robustness and providing the foundation for defense against



Data set Setting Acc.
Adv.
Acc.

Local 0.57 0.19
(Celeba) FedEM 0.85 0.13

FedAvg 0.80 0.01

Table 1. Accuracy of benign (Acc.) and perturbed (Adv. Acc.)
inputs given different training algorithms for 40 clients. Performed
10-step PGD attack (Madry et al., 2017) that is bounded by a
ℓ2 = 4.5 norm ball with a step size of α = 0.01

Data set Setting Acc.
Adv.
Acc

(Celeba) No Prop. 0.62 0.12
Prop. 0.52 0.27

Table 2. Effect of adversarial propagation during FedEM (pFed-
Def). Resources heavily constrained on most (36 of 40) clients.

internal attacks by allowing clients to not have white-box (as
in FedAvg), but only grey-box information of one another.

3 PFEDDEF - ADVERSARIAL TRAINING

We next introduce pFedDef, a novel adversarial training
algorithm for personalized federated learning. A global
desired adversarial data set proportion G ∈ [0, 1] is set, and
once every Q rounds, each client updates its local data set
to include adversarial training points (generated using its
current local model) based on G.

Robustness Propagation. For each client c ∈ [C] the pFed-
Def algorithm takes into consideration different resource
availability Rc ∈ [0, 1] at each client and propagates adver-
sarial learning from clients of similar data distributions with
more resources to clients with less resources. The pFedDef
algorithm attempts to achieve the desired adversarial data
set proportion G globally by inducing clients with ample
resources to increase their local adversarial proportions Fc.
As seen in table 2, robustness propagation circumvents re-
source constraints to lower internal attack success rates (i.e.,
higher adversarial accuracy) across all participating clients.

4 EVALUATION

In Figure 1, we analyze the impact of pFedDef on test ac-
curacy and robustness against internal (grey-box and white-
box) attacks compared to FedAvg and local training per-
formed with adversarial training for the Celeba data set.
The x-axis of the figure measures test accuracy, while the y-
axis measures accuracy against perturbed inputs from other
clients. We use triangles and circles respectively to denote
the results with and without adversarial training. Internal
attacks are shown as solid points, while the performance of
models against black-box (external) attacks are shown as

Figure 1. pFedDef provides higher robustness than FedAvg with
adversarial training against internal attacks, and is robust against
black-box attacks. Same training and attack setting to Table 1.

hollow points.

Regular and adversarial versions of local training perform
poorly with poor standard generalization and low test accu-
racy. For adversarial training, both FedEM (pFedDef) and
FedAvg display increased robustness against internal attacks.
The results indicate that pFedDef provides an improved in-
ternal attack robustness of 19% compared to FedAvg with
adversarial training. This is due to the differences in models
between adversary and victim in FedEM. Against black-box
attacks, the adversarially trained FedAvg method displays
higher robustness compared to pFedDef. In the black-box
setting, the attacker has no knowledge of the FedAvg-trained
or FedEM-trained models, taking away the relative advan-
tage of FedEM over FedAvg in the grey-box setting.
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