FEDERATED LEARNING & ITS LIMITATIONS
- Federated Learning (FL) trains a shared model through training decentralized data over clients while communicating only model updates.
- The server may become a bottleneck as the number of clients increases.

DYNAMIC DECENTRALIZED FL
- Decentralized FL: clients share their model updates with their neighbors instead of the central coordinator.

DECENTRALIZED METHOD
(Ring Topology)

1
2
w1 = (w1 + w2 + w3 + w4)/4

3
4

DECENTRALIZED METHOD IN MOBILE ENVIRONMENT
(Ring Topology)

Dynamic communication topology

PROPOSED ALGORITHM
- Dynamic decentralized FL on the \(i\)th client
- **Input:** initial point \(w_{0,i}\), communication matrix \(E\), the number of iterations \(K\)
 - **for** \(k = 0, \ldots, K - 1\) **do**
 - Random sample data; Update the local model using the sampled data;
 - Average the local model with neighbors: \(w_{k+1,i} = \sum_{j=1}^{n} E_{ij}w_{k,j}\)
- \(w = (w_1 + w_2 + w_3 + w_4)/4\)

CONVERGENCE RATE ANALYSIS
- We consider solving the following optimization problem
 \[
 \min_{w \in \mathbb{R}^N} \frac{1}{n} \sum_{i=1}^{n} f_i(w)
 \]
 where each \(f_i: \mathbb{R}^N \rightarrow \mathbb{R}\) is the local objective function of client \(i\).
- Assumptions: Lipschitz gradient & Spectral gap & Bounded variance & Start from 0 & the clients are connected sufficiently often in time.
- **Theorem:** the convergence rate for dynamic decentralized FL is \(O\left(\frac{1}{K} + \frac{1}{\sqrt{nK}}\right)\) if the number of iterations \(K\) is large enough.

EXPERIMENTAL RESULTS
- Test Accuracy in various settings.
- Results validate our theory since D-FL has the same convergence rate.

FUTURE WORK
- Generate a dataset from virtual agents in a virtual world
- Compared with the pre-existing FL datasets, this dataset is
 - more conform to the actual data collected from mobile nodes
 - naturally partitioned
 - having a realistic modeling for the dynamic graph

REFERENCES
Lian et al. (2017). Can decentralized algorithms outperform centralized algorithms?
Nedic et al. (2008). Distributed subgradient methods and quantization effects.