# pFedDef: Grey-box Defense for Personalized Federated Learning

Taejin Kim, Nikhil Madaan, Shubhranshu Singh, Carlee Joe-Wong Carnegie Mellon University, Contact: tkim2@andrew.cmu.edu

 $x + \epsilon sign\left(\nabla_x J(\Theta, x, y)\right)$ 

"aibbon"

97.51% confidence



### Background: Evasion Attacks and Federated Learning





 $sign\left(\nabla_x J(\Theta, x, y)\right)$ 

"panda"

52 17% confidence

7 51% confidence

Figure 1. Imperceivable noise is added to an image using a gradient-based attack, leading to misclassification.

"nematode"

#### Federated Learning

- Federated learning is a machine learning technique that trains a single model across multiple devices holding local data samples while maintaining data privacy [2]
- Personalized federated learning utilizes a similar training procedure to train slightly different models at each client that fit local data better, this paper uses FedEM algorithm for personalization [3]



- An adversarial example is an altered input to a neural network with perturbations undetectable to a human, but causes misclassification to a neural network [1]
- Often, gradient information is used to perturb the input, leading to either a targeted attack to a specific label, or an untargeted attack to any label
- Success measured by misclassification rate



Figure 2. Federated learning (FedAvg) trains a single global model by averaging gradients from multiple clients training on their local data sets

### Problem Statement: Internal Grey-Box Evasion Attacks

| Data set | Method | Acc. | Adv.<br>Acc. | Target<br>Hit |
|----------|--------|------|--------------|---------------|
| (CIFAR)  | Local  | 0.52 | 0.38         | 0.06          |
|          | FedEM  | 0.84 | 0.10         | 0.46          |
|          | FedAvg | 0.81 | 0.00         | 0.85          |
| (Celeba) | Local  | 0.57 | 0.19         | 0.48          |
|          | FedEM  | 0.85 | 0.13         | 0.52          |
|          | FedAvg | 0.80 | 0.01         | 0.60          |

Table 1. Test accuracy, accuracy against untargeted attacks (Adv. Acc.), and success of targeted attacks (Target Hit) for 40 clients given different training algorithms: local learning, federated learning, and personalized federated learning for CIFAR-10 and Celeba.

#### Grey-Box Attacks

- · Clients have full (federated learning, white-box attack) or partial (personalized FL, grey-box attack) information of models at other clients that can be used to create adversarial examples with higher attack success rate [1]
- E.g., spam filter developed through federated learning, malicious clients have knowledge to bypass spam filter of other clients
- Our problem scenario is different from poisoning attacks that compromise models during training phase [4]

### Contributions

To the best of our knowledge, we are the first to:

- Characterize internal evasion attack success rate in a (personalized) federated learning system and relate it to the amount of knowledge shared between clients during training
- Propose an adversarial training defense against internal attacks that utilizes personalized federated learning and considers different resource constraints at different clients

# Solution: pFedDef Algorithm and Robustness Propagation

#### Algorithm 1 pFedDef Training

- 1: Input: Adv. Proportion G, Dataset Update Freq. Q, PGD steps K. Client resource  $R_c$
- 2: for  $t \in Rounds$  do 3.
- if t% Q = 0 then
- $F \leftarrow adv_prop(G, R_c)$ 4: 5.
- for  $c \in [C]$  do
- update\_adv\_dataset( $c, K, F_c$ ) 6: end for
- 7: 8.

#### end if

9: federated\_adversarial\_training()

10: end for

#### **Robustness Propagation**

- · Clients with ample resources increase local adversarial proportion  $F_c$  beyond desired global proportion G to compensate for clients with low resources
- Propagation leads to better global robustness and leverages existing system resources effectively

#### pFedDef: Personalized Federated Defense

- Each client  $c \in [C]$  sets a *local adversarial* proportion  $F_c$  for the local data set that will be turned into adversarial data points, while staying within resource constraints ( $F_c \leq R_c$ ) (line 4)
- Clients perform adversarial training over adversarial data set at local clients and perform personalized federated learning aggregation (Line 9)
- Adversarial training was originally proposed for increasing robustness in a single model [1]

| Data set | Setting  | Acc. | Adv.<br>Acc. | Target<br>Hit |
|----------|----------|------|--------------|---------------|
| (CIFAR)  | No Prop. | 0.80 | 0.13         | 0.43          |
|          | Prop.    | 0.79 | 0.28         | 0.19          |
| (Celeba) | No Prop. | 0.62 | 0.12         | 0.33          |
|          | Prop.    | 0.52 | 0.27         | 0.41          |

Table 2. Test accuracy, accuracy against untargeted attacks (Adv. Acc.), and success of targeted attacks (Target Hit) with and without resource propagation. Datasets are CIFAR-10 and Celeba

## **Empirical Evaluation of pFedDef**



# (left) and Celeba (right).

- Federated learning (FedAvg) has very poor performance against internal evasion attacks as all clients have the same model parameters [2]
- · Local learning has very poor test accuracy due to the lack of collaboration between clients
- Personalized (FedEM + pFedDef) has high test accuracy comparable to FedAvg with adversarial training, while showing higher robustness against internal attacks (accuracy gain of 17% for CIFAR-10 and 19% for Celeba)

## Selected References

[1] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2017). Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083.

[2] Zizzo, G., Rawat, A., Sinn, M., & Buesser, B. (2020). Fat: Federated adversarial training. arXiv preprint arXiv:2012.01791. [3] Marfog, O., Neglia, G., Bellet, A., Kameni, L., & Vidal, R. (2021). Federated multi-task learning under a mixture of distributions. Advances in Neural Information Processing Systems, 34.

[4] Blanchard, P., El Mhamdi, E., Guerraoui, R., & Stainer, J. (2017). Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. In Advances in Neural Information Processing Systems. Curran Associates, Inc..