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Federated Learning (FL) Lifelong Learning (CL)

LL can effectively resist
catastrophic forgetting
when models train on a
sequence of unique tasks
by retaining knowledge
of previous tasks.

FL learns generalized central
model learns generalized
knowledge by aggregating
collective wisdom from each
independent client.

Low-power Devices

Single low-power devices may
be challenging to train on
computationally expensive
machine learning tasks. But
they are cheap and numerous,
can be used to overcome
hardware constraints.

Question: Can we support Federated Lifelong Learning on low-power devices?

Challenges

Challenge 1: Contents
FLLEdge agents must share knowledge
useful to other agents’ generalization.

X 7/

Challenge 3: Computation
Lifelong Learning algorithms are
computationally expensive to run on
low power devices.

Challenge 2: Communications
An efficient asynchronous communication
scheme is needed for sharing agent knowledge.

Challenge 4: Catastrophic Forgetting
Deployed Lifelong Learning algorithms must
effectively balance new and old knowledge.

System Overview
Overview
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Figure 1: Overview of FLLEdge
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e Fach FLLEdge agent 1s deployed on a Jetson Nano.
e FEach FLLEdge agent trains on a unique sequence of Atari games.
e All agents maintain a distributed database for knowledge sharing.
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Figure 2: Use Case Demonstration of FLLEdge
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Figure 4: Responsibilities of Software and Hardware Layers
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Experimental Results

Rewards of 10 tasks of 5-agent vs. 1-agent in limited training time
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Figure 7: Rewards of 5-agent vs.
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Improvements in Time with 5 Agents over 1 Agent
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Given comparison result, the agent trains with received information e.g. experience buffers, Fisher matrices

Intrinsic Dimension

Figure 6: Compressive Linear Operators

Step 3: Send Compressed Features

The peer-to-peer topology can be easily converted
to centralized topology for standard FL setting
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Figure 5: Learning Framework

FLLEdge 1s part of ShELL project funded by DARPA. For more, please refer to https://tinyurl.com/4cnx8nm

Figure 10: # seconds Spent on Training 10 tasks with 5 FLLEdge Agents

Each task is trained for 1000 frames. Until 2™ round, all new tasks are seen.
Hence, 1n all remaining rounds, each agent replays memory shared experienced
buffers. Memory replay generally takes about 0.01 seconds to complete, while
training from scratch (see rounds 1 and 2) takes about 870 seconds.
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