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Problem Setup

A group of n agents interacting over a fixed, undirected, and
connected network G = (V , E), seek to solve problem (1), de-
fined as follows: Each agent i ∈ [n]

(a) can only communicate to its neighbors Ni, over graph G,
(b)maintains a set of initial parameters xi ∈ Rd,

x? := arg min
x∈Rd

1

2n

n∑
i=1

‖x− xi‖2. (1)

Challenges:
•Classically, consensus algorithms have convergence rates pro-
portional to their corresponding networks’ spectral gaps.

•Structures such as Ring and Path have spectral gaps of O(n2).
•Scalability is a generic term for methods that improve the
convergence rate dependence on the number of agents (n).
Main Objective
Design a communication-efficient and scalable algorithm for
the average consensus problem in (1).

[1, 2, 3, 4]

Compression Model

We consider ω-contracted randomized compression operators
Q : Rd→ Rd that satisfy

E
∥∥Q(x)− x

∥∥2 ≤ ω2
∥∥x∥∥2

, ∀x ∈ Rd, (2)

where ω ∈ [0, 1), and ω = 0 means no compression.
Example Operators:
•Sparsification: randk (or topk) operator that selects k random
(or top) out of d entries.

•Quantization: qsgdk operator that rounds each entry to one of
the 2k−1+1 quantized levels.

Aggregation Model

For an undirected graph G = {V , E}, we consider its associated
Metropolis-Hasting mixing matrix W =MH(G) as follows:

Wij =


1

max{|Ni|,|Nj|}+1, if (i, j) ∈ E
1−

∑
j 6=i

Wij, if i = j

0, otherwise

(3)

which is doubly-stochastic and symmetric.

Algorithm & Comparisons

Algorithm 1: Scalable Compressed Gossip (SCG)
Input: initial parameters xi(0) ∈ Rd, for all i ∈ [n],
network G = (V , E) with mixing matrix W, stepsize
γ ∈ (0, 1], operator Q, momentum σ ∈ [0, 1).

1: x̂i(0) := 0, yi(0) := xi(0), ∀i ∈ [n]

2: for t in 0, . . . , T−1, in parallel ∀i ∈ [n] do
3: qi(t) := Q(xi(t)− x̂i(t))

4: Send qi(t) and receive qj(t), for all j ∈ Ni

5: x̂j(t+1) := x̂j(t) + qj(t), for all j ∈ Ni ∪ {i}
6: yi(t+1) := xi(t) + γ

∑
j ∈ Ni ∪ {i}

Wij (x̂j(t+1)− x̂i(t+1))

7: xi(t+1) := (1+σ)yi(t+1)− σ yi(t)
8: end for

Initialization Compression Communication
Error-Feedback Aggregation Extrapolation

Comparison
• Exact Gossip (EG) [1]

• Compressed Gossip (CG) [2]

• Scalable Exact Gossip (SEG) [3]

• Scalable Compressed Gossip (SCG)
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Algorithm Linear Rate Stepsize (γ) ω

EG [1] O
(
1−γn−2

)
(0, 1] no compression

SEG [3] O
(
1−γ 1

2n−1
) (

0, 1
2

]
no compression

CG [2] O
(
1−n−4

)
O
(
n−4
)

[0, 1)

CG
flexible γ

O
(
1−γn−2

)
(0, 1]

[
0,Θ

(
1

(1+γ)n2

)]
SCG
This Work

O
(
1−γ 1

2n−1
) (

0, 1
2

] [
0,Θ

(
1

(1+γ)n2

)]
n is the number of agents

Convergence Analysis

Theorem 1: Scalable Compressed Gossip
Let operator Q satisfies (2), yi(0) = xi(0), x̂i(0) = 0, for all
i∈[n], γ ∈ (0, 1], σ=

5n−√γ
5n+
√
γ , and W =MH(G). The iterates

of Algorithm 1 satisfy

EΨx(t) ≤ C0λ̃
tΨx(0),

where κ2=
√

2σ2+2σ+1, κ3 =
√

2σ2+2, β = ‖W−I‖,
λ=1−

√
γ

5n , λ̃=1−
√
γ

10n, Ψx(t)
2=

n∑
i=1

∥∥xi(t)−x?∥∥2, and C0, C>0,

for ω ≤
(
2
(
κ3 + γβκ2

)(
λ−

1
2 + γβκ2Cλ

−1(1− λ1
2)−2
))−1.

Numerical Result

Number of iterations required for ε-accuracy
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•n = 10 to 200

•d = 150

• ε = 10−4

• 5-bit quantization

Consensus error
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•Ring graph, n = 120, d = 150, 5-bit quantization
References
[1] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems & Control Letters, vol. 53, no. 1, pp.

65–78, 2004.

[2] A. Koloskova, S. Stich, and M. Jaggi, “Decentralized Stochastic Optimization and Gossip Algorithms with Compressed
Communication,” in International Conference on Machine Learning, 2019, pp. 3478–3487.

[3] A. Olshevsky, “Linear Time Average Consensus and Distributed Optimization on Fixed Graphs,” SIAM J. Control.
Optim., vol. 55, pp. 3990–4014, 2017.

[4] M.T. Toghani and C. Uribe, “Scalable average consensus with compressed communications,” arXiv preprint
arXiv:2109.06996, 2021.

.


