Scalable Average Consensus with Compressed Communications Mohammad Taha Toghani, César A. Uribe Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

Problem Setup

A group of *n* agents interacting over a fixed, undirected, and connected network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, seek to solve problem (1), defined as follows: Each agent $i \in [n]$

(a) can only communicate to its neighbors \mathcal{N}_i , over graph \mathcal{G} , (b) maintains a set of initial parameters $\mathbf{x}_i \in \mathbb{R}^d$,

$$\mathbf{x}^{\star} := \underset{\mathbf{x} \in \mathbb{R}^d}{\operatorname{arg\,min}} \frac{1}{2n} \sum_{i=1}^n ||\mathbf{x} - \mathbf{x}_i||^2.$$

Challenges:

- Classically, consensus algorithms have convergence rates proportional to their corresponding networks' spectral gaps.
- Structures such as Ring and Path have spectral gaps of $\mathcal{O}(n^2)$.
- Scalability is a generic term for methods that improve the convergence rate dependence on the number of agents (n).

Main Objective

Design a communication-efficient and scalable algorithm for the average consensus problem in (1).

Compression Model

We consider ω -contracted randomized compressio $Q: \mathbb{R}^d \to \mathbb{R}^d$ that satisfy

$$\mathbb{E} \| Q(\mathbf{x}) - \mathbf{x} \|^2 \le \omega^2 \| \mathbf{x} \|^2, \qquad \forall \mathbf{x} \in \mathbb{R}^d$$

where $\omega \in [0, 1)$, and $\omega = 0$ means no compression. **Example Operators:**

- Sparsification: rand_k (or top_k) operator that selects k random (or top) out of d entries.
- Quantization: $qsgd_k$ operator that rounds each entry to one of the $2^{k-1}+1$ quantized levels.

Aggregation Model

For an undirected graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$, we consider its associated *Metropolis-Hasting* mixing matrix $\mathbf{W} = \mathcal{MH}(\mathcal{G})$ as follows:

$$\mathbf{W}_{ij} = \begin{cases} \frac{1}{\max\{|\mathcal{N}_i|, |\mathcal{N}_j|\}+1}, & \text{if } (i, j) \in \mathcal{E} \\ 1 - \sum_{j \neq i} \mathbf{W}_{ij}, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

which is doubly-stochastic and symmetric.

(1)

Algorithm & Comparisons

Algorithm 1: Scalable Compressed Gossip (SCG)

Input: initial parameters $\mathbf{x}_i(0) \in \mathbb{R}^d$.
network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with mixing mat
$\gamma \in (0, 1]$, operator Q , momentum σ
1: $\hat{\mathbf{x}}_i(0) := 0, \mathbf{y}_i(0) := \mathbf{x}_i(0), \forall i \in \mathbf{x}_i(0), $
2: for t in $0, \ldots, T-1$, in parallel \forall
3: $\mathbf{q}_i(t) := Q(\mathbf{x}_i(t) - \hat{\mathbf{x}}_i(t))$
4: Send $\mathbf{q}_i(t)$ and receive $\mathbf{q}_j(t)$,
5: $\hat{\mathbf{x}}_j(t+1) := \hat{\mathbf{x}}_j(t) + \mathbf{q}_j(t)$, for
6: $\mathbf{y}_i(t+1) := \mathbf{x}_i(t) + \gamma \sum \mathbf{W}_{ij}$
$j \in \mathcal{N}_i \cup \{i\}$
7: $\mathbf{x}_i(t+1) := (1+\sigma) \mathbf{y}_i(t+1) - \sigma$
8: end for
Initialization Compression C

Error-Feedback Aggregation **Extrapolation**

Dn	operators

(2)

(3)

Comparison

- Exact Gossip (EG) [1]
- Compressed Gossip (CG) [2]
- Scalable Exact Gossip (SEG) [3]
- Scalable Compressed Gossip (SCG) This Work

Algorithm	Linear Rate	Stepsize	
EG [1]	$\mathcal{O}(1-\gamma n^{-2})$	(0, 1	
SEG [3]	$\mathcal{O}(1-\frac{\gamma^{\frac{1}{2}}n^{-1}}{\gamma^{\frac{1}{2}}n})$	$(0, \frac{1}{2})$	
CG [2]	$\mathcal{O}(1-n^{-4})$	$\mathcal{O}(n^{-}$	
$\mathbf{CG}_{\mathbf{flexible }\gamma}$	$\mathcal{O}(1-\gamma n^{-2})$	(0, 1	
SCG This Work	$\mathcal{O}(1-\frac{\gamma^{\frac{1}{2}}n^{-1}}{\gamma^{\frac{1}{2}}n})$	$(0, \frac{1}{2})$	
<i>n</i> is the number of agents			

RICE ENGINEERING Electrical and Computer Engineering

Convergence Analysis

- , for all $i \in [n]$, trix W, stepsize $\in [0, 1).$ $\in [n]$ $\forall i \in [n] \mathbf{do}$
- for all $j \in \mathcal{N}_i$ r all $j \in \mathcal{N}_i \cup \{i\}$ $(\hat{\mathbf{x}}_{i}(t+1) - \hat{\mathbf{x}}_{i}(t+1))$

$\mathbf{y}_i(t)$

Initialization Compression Communication

Let operator Q satisfies (
$i \in [n], \gamma \in (0, 1], \sigma = \frac{5n - \sqrt{3}}{5n + \sqrt{3}}$
of Algorithm 1 satisfy
$\mathbb{E}\Psi_x($
where $\kappa_2 = \sqrt{2\sigma^2 + 2\sigma + 2\sigma}$
$\lambda = 1 - \frac{\sqrt{\gamma}}{5n}, \ \tilde{\lambda} = 1 - \frac{\sqrt{\gamma}}{10n}, \ \Psi_x($
for $\omega < (2(\kappa_2 + \gamma\beta\kappa_2))$

Numerical Result

References

- 65-78, 2004.
- *Optim.*, vol. 55, pp. 3990–4014, 2017.
- arXiv:2109.06996, 2021.

[1] L. Xiao and S. Boyd, "Fast linear iterations for distributed averaging," Systems & Control Letters, vol. 53, no. 1, pp.

[2] A. Koloskova, S. Stich, and M. Jaggi, "Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication," in International Conference on Machine Learning, 2019, pp. 3478–3487. [3] A. Olshevsky, "Linear Time Average Consensus and Distributed Optimization on Fixed Graphs," SIAM J. Control. [4] M.T. Toghani and C. Uribe, "Scalable average consensus with compressed communications," arXiv preprint