INTRODUCTION

Harmony is a heterogeneity-aware hierarchical coordination framework for high-performance Federated Learning. It effectively directs the training process to make it proceed in harmony through intelligently mediating the conflict caused by the heterogeneity in the following four folds:

- The static system heterogeneity caused by different hardware configurations;
- The dynamic system heterogeneity caused by resource contention at runtime;
- The data heterogeneity in each local device;
- The data heterogeneity in each global training round.

Q1: How is the system efficiency affected by the device type (static system heterogeneity) and the concurrently running foreground apps (dynamic system heterogeneity)?

Q2: How is the statistical efficiency affected by the local data distribution (local data heterogeneity) of each participating device?

Q3: How is the statistical efficiency affected by the global data distribution (global data heterogeneity) of the overall training data?

System Overview

① All the mobile devices participate in the first training round and complete local training.
② Local coordinator sends the following information to the central server.
③ Global coordinator well estimates the data distribution and predicts the runtime training capability.
④ Global coordinator intelligently selects the participating devices by jointly considering the homogeneity of the local training data and runtime training capability. Moreover, global coordinator fine-tunes the distribution of the overall training data.
⑤ Global coordinator broadcasts the coordination result to the corresponding selected devices.
⑥ Local coordinator then conducts the local training process based on the coordination result.
⑦ Local coordinator monitors real-time status and data.

Evaluation

Data distribution within the selected devices of different schemes (left column), and the overall data distribution (right column).

Conclusion

Harmony intelligently balances the model performance and training progress in a highly dynamic and heterogeneous training environment from two perspectives. The experiment results show that Harmony improves the model performance up to 27.62%, effectively accelerates the training speed by up to 3.29 ×, and achieves energy-saving up to 88.41%.