

Flow: Fine-grained Personalized Federated Learning through Dynamic Routing

Kunjal Panchal (<u>kpanchal@umass.edu</u>) and Hui Guan University of Massachusetts, Amherst

① Introduction

Statistical heterogeneity can be detrimental for clients in FL need for **personalization** Client #1 0.0.0.0. Client # Client #2 Client #2 +0-0-0+0+ -----6-8-8-8 (b) Per-client Per Figure: Types of Personalization Existing approaches are per-client Need for a **per-instance** approach: instances that fall under the

global data distribution can benefit more by using the global model

③ Inference & Experiments

A client doesn't persist any personalized/local states, since it's impractical in cross-device FL

(1) Generates w^{ℓ} from w^{g}

(2) Trains routing policy θ on latest feature repr learned by w^{g}

We validate our approach against:

- No personalization:
 - to understand w^{g} behavior
- Per-client personalization: to see how much w^{ℓ} is better over w^{g}
- Stateful personalization: to observe the disadvantages of clients without w^{ℓ} or with stale w^{ℓ}

2 Methodology

Depending on the input it receives, Flow creates a personalized model that can dynamically make decisions on

(1) when to use a client's local parameters, and

(2) when to use the global parameters.

Stages of **Flow**:

(a) Receive the global model w^{g} . Create a local model w^{ℓ} from w^{g} by finetuning for single epoch.

(b) Create the personalized model which has w^{g} , w^{ℓ} , and a dynamic policy θ for per-instance routing.

Shallow sequential models are computationally less intensive, and still allow dynamic routing temporally, hence we pick language tasks

- $\mathbf{r}_{t} = \operatorname{softmax}_{\tau}(f_{\theta}([x_{t}; \mathbf{h}_{(t-1)}]))$ [prob. of picking routes w^{g} and w^{ℓ}]
- $\mathbf{h}_{t} = [g(w^{g}, \mathbf{h}_{(t-1)}^{(t-1)}x_{t}); \ell(w^{\ell}, \mathbf{h}_{(t-1)}^{(t-1)}x_{t})] \cdot \mathbf{r}_{t}$ [updating hidden state with the mixture of global and local updates, based on the route probability]

Beneficial for the newly joined clients with heterogeneous data, which has insufficient sample count for a near-optimal w^{ℓ} .

• This improves inference performance of those instances which are not well-learned by the less generalizable local model.

References

1. Federated Reconstruction: Partially Local Federated Learning by Karan Singhal et al NeurIPS 2021

- 2. Neural Speed Reading via Skim-RNN by Minjoon Seo et al ICLR 2018
- 3. Federated Optimization in Heterogeneous Networks by Tian Li et al MLSys 2020

④ Results

(5) Discussion

- FedYogi performs better than client-side personalization FedProx and LGFedAvg (both uses FedAvg as server-side aggregation) because of **low** statistical variance across clients
- Per-instance Dynamic Routing outperforms per-client FedProx and LGFedAvg, proving that we can **seamlessly integrate local** model with the **global** model, to outperform individual models
- FedRecon (using FedYogi as aggregation), outperforms stateful approaches since the latter require training of personalized models over multiple rounds, which is impractical when only ~5-6% of total clients participate
- Flow outperforms FedRecon since it is **finer-grained** in its choice of a client-specific local model and a generalized global model