Lower Bounds and Nearly Optimal Algorithms in

Distributed Learning with Communication Compression

Wotao Yin DAMO Academy, Alibaba Group



Joint work with

ALIBABA DAMO ACADEMY f%

Xinmeng Huang Yiming Chen Kun Yuan
(UPenn) (Alibaba) (Alibaba)



Distributed learning

* A network of n nodes (GPUs) collaborate to solve the problem:

. 1 :
min - f(z) =~ ;fi(:v), where | fi(z)=|Ee,~p, F(z;&).
e Each component f; : R* — R is local and private to node ¢

e Random variable & denotes the local data that follows distribution D;

 Each local distribution D, may be different; data heterogeneity exists



ggk) = VF(zP); fgk)) (Local compt.)
D) — &) ggk) (Global comm.)
n
i=1

 Each node 7 samples data fz-(k) and computes gradient VF(x(k); fgk))

* All nodes synchronize (i.e. globally average) to update model x per iteration



Expensive communication overhead in PSGD iif?%
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* Global average incurs O(n) comm. overhead; proportional to network size n
 Each node sends a full model (or gradient) to the server; proportional to dimension d

 Each node interacts with the server at every iteration; proportional to iteration numbers



Huge Communication overhead in PSGD 't 307
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 PSGD cannot achieve the ideal linear speedup in throughput due to comm. overhead

 Larger comm-to-compt ratio leads to worse performance in PSGD
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B. Ying, K. Yuan, H. Hu, Y. Chen and W. Yin, “BlueFog: Make decentralized algorithms practical for optimization and deep learning”, arXiv: 2111. 04287, 2021



Methodologies to save communication

Global average incurs O(n) comm. overhead; proportional to network size n

|[Decentralized communication]

Each node interacts with the server at every iteration; proportional to iteration numbers

[Lazy communication]

Each node sends a full model (or gradient) to the server; proportional to dimension d

[Communication compression]



Decentralized SGD (DSGD)

lteration K

DSGD Algorithm over one-peer exponential graphs
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lteration K+3

B. Ying, K. Yuan, Y. Chen, H. Hu, P. Pan, and W. Yin, “Exponential Graph is Provably Efficient for Deep Training”, NeurlPS 2021



DSGD is more communication-efficient than PSGD : Y357
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* We implement DSGD with BlueFog * DSGD has better linear speedup than PSGD

P3.16xlarge/25 Gbps/ResNet50/64 batch size P3.16xlarge/25 Gbps/ResNet50/32 batch size
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B. Ying, K. Yuan, H. Hu, Y. Chen and W. Yin, “BlueFog: Make decentralized algorithms practical for optimization and deep learning”, arXiv: 2111. 04287, 2021

Github address: https://github.com/Bluefog-Lib/bluefog
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Lazy communication (Federated Average) B

xEkJr%) = x,gk) — VVF(w,gk); §,§k)) (Local update)
(k+3) .
$,§k+1> _ ) e 1) if mod(k, 7) # 0 (Lazy comm. )
E a2 ifmod(k,T) =0

* Nodes communicate once every 7 iterations [Konecny et .al. 2015, 2016}

* Or nodes communicate when necessary, i.e., the lazily aggregated gradient [Chen et. al. 2018]

* |n ProxSkip [Mishchenko et. al., 2022], lazy strategy is proved to save communication

[Konecny et.al. 2016] J. Konecny et.al., “Federated learning: Strategies for improving communication efficiency”, 2016

Chen et. al. 2018] T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated gradient for communication-efficient distributed learning”, NeurlPS 2018

‘Mishchenko et.al. 2016] K. Mishchenko et.al., “ProxSkip: Yes! Local gradient steps provably lead to communication acceleration! Finally!”, ICML 2022
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This talk will study distributed learning with communication compression



Communication compression

* A basic (but not state-of-the-art) algorithm is QSGD [Alistarh et. al., 2017]

k k k
o = VP

(k+1) _ (k) _ 7 - C (k)
X, X, n; (9] )

C'(-) is a compressor. It can quantize or sparsify the full gradient

Quantization
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Communication compression

* A basic (but not state-of-the-art) algorithm is QSGD [Alistarh et. al., 2017]

k k k
o = VP

(k+1) _ (k) _ 7 - C (k)
X, X, n; (9] )

C'(-) is a compressor. It can quantize or sparsify the full gradient

Sparsification

rrrrrrrrrrrrrrr

8 bit

8 bit




Communication compression algorithms it ;3

ALIBABA DAMO ACADEMY f%

 There are extensive studies in distributed learning with communication compression

Compressor StaticQuant AdaptQuant -
Compress Compress Compress Error
model gradient difference feedback
Compression

Algorithm
development

Bidirectional compre

* The combination of different compressors, algorithms, and strategies gives rise to

Q-SGD [Alistarh et. al., 2017], Mem-SGD [Stich et. al., 2018], EF21-SGD [Fatkhullin et. al., 2021],
CSER [Xie et.al., 2020], Double Squeeze [Tang et. al., 2019], Artemis [Philippenko et.al. 2022], etc.

e How to understand the performance of different algorithms?



Function class #a.. and gradient oracle class O,

* Function class. We let Fa ; denote the set of all functions satisfying Assumption 1

Assumption 1 (Smoothness) Each local objective f; has L-Lipschitz gradient, i.e.,

IVfi(z) = Vi)l < Lz —y|, Va,yeRY

and f(2(9)) —inf, ga f(z) < A with f = =5 fie

* Gradient oracle class. Each worker accesses local gradientV f;(x) via a stochastic oracle

Assump. 2 (Stochastic gradient) The gradient oracles {O; : 1 < i < n} satisfy

U6, 10i(w;G)| = Vfilz)

and

e 1106 (23G) — Vii(@)|)?] < o2,

Ve RY.
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Compressor class U/, AR

 Compressor class. Most compressors in literature are either unbiased or contractive

« Welet U, denote the set of unbiased compressors satisfying Assumption 3

Assump. 3 (Unbiased compressor) The compression operator C' : R¢ — RY satisfies

C[C(2)] =z, E|

C(z) = zl]*] < wllz]®, VzeR

for constant w > 0, where the expectation 1s taken over the randomness of the com-
pression operator C'.

* |dentity operator | (i.e. no compression) is an unbiased compressor with w = 0.



Compressor class U/, : examles AR
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 Example | (random quantization [Alistarh et. al. 2017]).

For any v € R", C(v) (with tuning parameter s) is defined as C (v) = [||v||2 - sgn (vk) - £(vk)|1<k<aq Where if
ol/||v]| € [€/s, (£+1)/s], (
({+1)/s with prob. s|vg|/||v|| — ¢

/s otherwise

E(vg) = <

The associated unbiasedness parameter is w = min{d/s?, vVd/s}.

 Example Il (random sparsification [Wangni et.al., 2018]).

For any v € R", C(v) (with tuning parameter €)is defined as C (v) = |||v||2 - Bernoulli(pg)/pr]1<x<a Where
{pPk }1<k<a are the solution to
d d
min Y pr st > vi/pe < (1+ €[]
k=1 k=1

The associated unbiasedness parameter is w = 1 + € (if the solution exists).

Alistarh et. al. 2017] D. Alistarh, et. al. , "QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding”, NeurlPS 2017

'Wangni et. al. 2018] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient Sparsification for Communication-Efficient Distributed Optimization”, NeurlPS 2018
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Compressor class Cs AR

* We let Cs denote the family of contractive compressors satisfying Assumption 4

Assump. 4 (Contractive compressor) The compression operator C' : R — R satisfies

E[|C(2) — 2z[I*] < (1= 0)||z]I*, VzeRT

for constant 0 € (0, 1], where the expectation is taken over the randomness of the
compression operator C'.

* |dentity operator | (i.e. no compression) is a contractive compressor with 0 = 1.



Compressor class Cs AR
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 Example | (top-k/rand-k [Stich et. al., 2018]).

For any v € R", C(v) (with tuning parameter k) is defined by
maintaining the largest k entries or random k entries, and zeroing out the rest.

The associated contraction parameter is 6 = d/k.

 Example Il (random sketching [Stich, 2020]).

For any v € R"®, C(v) = S(S'S)"S"v with a possibly random matrix S (usually sparse or low-rank). The
associated contraction parameter is 6 =1 — ||[I — S(S'S)TS"|3.

[Stich et. al., 2018] S. Stich, J. Cordonnier, and M. Jaggi, “Sparsified SGD with Memory”, NeurlPS 2018

[Stich, 2018] S. Stich, “On Communication Compression for Distributed Optimization on Heterogeneous Data”, ArXiv 2020
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Algorithm class A ;3

* Workers communicate directed with a central server. All iterations are synchronized.

 Eachworkerie {1,.--- ,n} isendowed withC;. < Serverisendowed with compressor (.

* Ifsome C; = I, then worker 7 conducts no compression. If Cy = I, then compression is unidirectional

 Zero-respecting property: # non-zeros increase only by local update or comm. with the server

Parameter Server

[l lal




Existing convergence rates (non-convex)

Algorithm Convergence Rate Compression  Trans. Compl.
e [
MEMSGD O (gip e+ g) Ul o5
Double Squeeze O( \/% | 54%2; 2/3 clr Bcigi;réc;tcizszl O(n3/8%)
SR O( g s f) el g
2rsp 0 (o) el



Existing convergence rate (non-convex) AR
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* When 7T is sufficiently large so that o /v/nT dominates the rate, the algorithm achieves linear speedup

o)

. 2 °
To guarantee NG < €, we require I' > “— (inversely prop. to n)

ne?

EF21-SGD and Q-SGD cannot achieve linear speedup

* Transient iterations refer to those before an algorithm achieves linear speedup

101

—— Quantized SGD

o Reflect sensitivity to compressions
Parallel SGD

o The shorter the better
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Existing convergence rate (hon-convex) !i/’%%

* When 7T is sufficiently large so that o /v/nT dominates the rate, the algorithm achieves linear speedup

. 2 °
To guarantee \/(;Tr < ¢, we require I' > = (inversely prop. to n)

EF21-SGD and Q-SGD cannot achieve linear speedup

* Transient iterations refer to those before an algorithm achieves linear speedup

o Reflect sensitivity to compressions

o The shorter the better

e Mem-SGD, Double Squeeze, and CSER additionally require bounded gradients E;||V f;(2)||* < G
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What is the optimal convergence rate for approaches using Cs or U, ?



Mathematical formulation !i/’%%

* To address these questions, we consider the following formulation

inf  sup sup SUp L
AcA {Ci}?zogc {Oi}f’;’zlgOag 1 fi T L CFAL

V(ZTagrs ?:1,{Oi}?:1,{Ci}?:O,T)H2]°

where 4 {f1»  {0:37_ {c;}»_,,T are the output of algorithm A with no more than T°

=17

gradient queries and communications on each worker

* In other words, given a class of functions Fa.r , gradient oracles O,2, compressors C ( being Cs

or U, ), the formulation seeks the optimal algorithm and the convergence rate it has.



Why supremum over compressors? it ;3

V(@A rym {0, {Ci)ym,.T) I°]

inf  sup sup SILE |

=1 =

* To gauge the algorithmic performance over the entire family of unbiased or contractive compressors

 To gauge the algorithmic performance without further assumptions on compressors



Lower bounds for unbiased compressors EER

Theorem 1 (Unidirectional compression)

For every A, L >0, n>2 w>0,0 >0, T > (1+w)?, there exists a set of
local loss functions { f; }** ; € FAa 1, stochastic gradient oracles {O;}" ; C O,2,

w-unbiased compressors {C; }*_, C U,, with Cy = I, such that for any algorithm
A € A starting from a given constant z(?), it holds that

| A ALo?\ 2 (1 +w)AL
2197 G gy, 10 (0o DI Q(< ) )

nl’ 1T

* Whenn =1and w = 0, it recovers the bound in stochastic non-convex optimization [Arjevani 2022]

e Whenn =1,w = 0andoc* =0, it recovers deterministic non-convex optimization [Carmon 2022]



Lower bounds for unbiased compressors EER

Corollary 1 (Bidirectional compression)

Under the same settings, there exists a set of local objectives {f;}", C Fa.L.
stochastic gradient oracles {O;}; C O,2, w-unbiased compressors {C;}I_, C

U, such that for any algorithm A € A Startmg from z(9), the same lower bound
is also valid

* Unidirectional and bidirectional unbiased compression share the same lower bound



Lower bounds for contractive compressors ¢ 9537

Theorem 2 (Unidirectional contractive compression)
For every A, L >0, n > 2, w >0, 0 >0, T > § %, there exists a set of

local loss functions { f;}I*.; C FAa 1, stochastic gradient oracles {O;}" ; C O,z2,

w-unbiased compressors {C; }I'_, C U, with Cy = I, such that for any algorithm
A € A starting from a given constant z(9) | it holds that

ALc? 2 AL
L An An AN : — Q I )
V(@ 100m, 1onm, )l T ST

43[

 The same bound also holds for bidirectional contractive compression



Have the lower bound limits been attained by existing algorithms?



NOt VEt 000
Algorithm Convergence Rate Compression Trans. Compl.
Uni/Bidirectional
O | 1 2
Lower Bound Theorem 2 2 ( VnT = 98 T> Contractive O(n/o%)
o, 14w Uni/Bidirectional 5
Theorem 1 Q ( — + =7 ) Unbiased O (n(1 4 w)?)
) (14+w)? %o +w?°b Unidirectional B
Q>6D O ( vnT 1.1.d, Unbiased
] = G2/3 1 Unidirectional 3 /e
Upper Bound MEMSED “ ( VnT © 62/372/3 © T Contractive O(n”/0%)
PP N Double S O ( o G2/3 1 Bidirectional O( 3/58)
DD SAEEE vnT = §4/372/3 ° T Contractive &
o a2/3 1 Unidirectional 3 /4
CSER © (\/nT 52/312/3 T Contractive O(n?/0%)
Unidirectional
o 1 .
. N ( 53T 5T> Contractive

* A big gap exists between established lower bound and existing upper bounds

& F K
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* For example, contractive lower bound tran. compl. O(n/5%) is far shorter than existing ones
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Can we develop new algorithms to (nearly) achieve these lower bounds?



Fast compressed communication (FCC)

 We propose a novel module named as fast compressed communication (FCC).

* FCCis compatible with both contractive and unbiased compressors.

Algorithm 1 v¥:%*) = FCC(v(**) (O, R, target receiver(s))

Input: The vector v(**) aimed to communicate at iteration k; a compressor C;
rounds R; initial vector p(k:0) — 0; target receiver(s);
forr=0,--- , R—1do
Compress v%*) — ¢(F:7) into k7)) = C'(v(F*) — pkr))
Send ¢(%:7) to the target recerver(s)
Update ,U(k‘,fl“—l—l) — v(kar) + C(k,fr’)
end for > The set {c(F>7)} f — & will be sent to the receiver during the for-loop

return Variable v(* ). > It holds that v(k-R) = S~E- L c(k.r)




Fast compressed communication (FCC) AR

FCC module has R rounds of compressions per call

When R =1, FCC reduces to a standard compression v*:1) = C/(y**))

* When R > 1, FCC yields exponentially smaller errors. When R — oo, FCC yields lossless compression

Lemma 1 (FCC property)

Let C be a d-contractive compressor and v¥) = FCC(v**) C, R). It holds
for any R > 1 and v%*) € R? that

B [llo™ — oI < (1= ) EI)?, W =10,1,2,

* FCC lies between a standard one-round compression and a lossless compression



The backbone: Double Squeeze !i/’%%

* Double Squeeze [Tang et. al., 2019] is effective to conduct uni-/bi-directional compression.

Algorithm 1: Double Squeeze

Input: Initialize 2(0). learning rate ~v; compression round R?; v(0) = ng) =0,V € |n]
for k=0,1,--- , K —1do
On all workers in parallel:

Query stochastic gradients g, 5k — Ofb-(x(’"C )3 CZ-( k’o)) > Gradient calculation

Error compensate g, e (k) + v§k>

Update error v( +1) = f]fm C (gf“) > Worker sends C; (fjgk)) to server
On server:

Error compensate g(k) — ZZ , O (g (k)) + (k) > C (g},gk)) received from workers

Update error plb+1) — g(k) — Cy (g(k)) > Server sends Co(§(*)) to workers

On all workers in parallel:
Update model parameter g+l — (k) _ ~vCo (g(k)) > Co(§(*)) received from server
end for




NEOLITHIC: A nearly optimal algorithm
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Change 1: Replace the standard compression with R-round FCC compression

Algorithm 1: NEOLITHIC

Input: Initialize x(o); learning rate v; compression round R; v(0) = v§0) =0,V € [n]

fork=0,1,--- , K —1do
On all workers in parallel:
Query stochastic gradients g, 5k — = Ef:_()l O;(xF); Ci(k’r))
Error compensate g, 5 — (k) + fu(k)
Update error v( +) _ — §§k) FCC(g (k), C';, R, server)
On server:
Error compensate (%) = L ™% S:R ! (k ") 4 k)

Update error v(#+1) = g(k) — FCC(g(k), CO, R, all workers)
On all workers in parallel:
Update model parameter z(#71) = z(k) — 4 S (k)
end for

> Gradient accumulation

> Worker sends {cgk’r)} to server

> {c,gk’ﬂ} received from workers

> Server sends {c(¥'7)} to workers

> {c(k7)1 received from server




NEOLITHIC: A nearly optimal algorithm !i/’%%

Change 2: Conduct R-batch gradient accumulation to balance with R-round compression

Algorithm 1: NEOLITHIC

Input: Initialize (?); learning rate ~; compression round R; v(9) = Ug()) =0,V € [n]
for k=0,1,--- , K —1do
On all workers in parallel:

Query stochastic gradients g, 3R = = Zfz_ol O, (zF); CZ-(k’T)) > Gradient accumulation

Error compensate g = (k) + oM

Update error U( i ) = §,L(k) FCC(g <k), C;, R, server) > Worker sends {cgk’r)} to server
On server:

Error compensate g(k) = sz 1 SR ! (k ") + p(k) > {cgk’r)} received from workers

Update error plk+1) — g(k) — FCC(g(k), CQ, R, all WOI‘keI‘S) > Server sends {c(¥'7)} to workers
On all workers in parallel:

Update model parameter z(*+t1) = () — ~ ZR_ ko) > {c(F:7) ) received from server

end for




NEOLITHIC: A nearly optimal algorithm i F 1%

NEOLITHIC can conduct either unidirectional or bidirectional compression

NEOLITHIC is compatible with both unbiased and contractive compression

For each iteration, NEOLITHIC conducts R gradient calculations and R compressions

Given compression round budget T, we shall consider T/R iterations in NEOLITHIC for fair comparison



Upper bounds for contractive compressors !i/?%

Theorem. 3 (NEOLITHIC with bidirectional contractive compression)

Given any constants n > 1, 6 € (0,1], assume = > ||V fi(z) — Vf(z)]|* < b? for any z € R?, and let
2(*) be generated by NEOLITHIC. By setting R and the learning rate appropritely, it holds for any K > 0 and
compressors {C; }1*_, C Cs that

K

1 $ e A [ (ALe2\? AL
S A[vm’f)ﬂo(( ) 5 ).

k=0

where 1" = K R 1s the total number of gradient queries (communication rounds) on each worker.

* O(.)omits logarithmic terms

ALo2\? AL
5T

* Recall the established lower bound Q (( e | ), we find it is nearly attained

e Letting Cy = I, the same lower bound for unidirectional contractive compression also holds



Upper bounds for unbiased compressors i F 1%

Theorem. 4 (NEOLITHIC with bidirectional compression)
Under the same assumptions as in Theorem 1, it holds for any K > 0 and compressors {C;}"_, C U,, that
K 1
1 - [ (ALoc*\?> (1+w)AL
0 NP =0 | .
res PILUZICUIE (( ) = )

This further leads to a transient complexity of O (n(1+w)?).

ALo?\ 2 L (WAL
ni’ T

* Recall the established lower bound (( ) , we find it is nearly attained by NEOLITHIC

* NEOLITHIC also attains the lower bound with unidirectional compression



NEOLITHIC (nearly) attains the optimal convergence rate AR
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Algorithm Convergence Rate Compression Trans. Compl.
Lower Bound Theorem 2 2 (\/(froT I 51T> UniC/](?Iil(tiri:li:it\ifznal O(n/6%)
Ment o) SR o
Teoems 07+ ) Unidesiond 55
Upper Bound Theorem 4 O (\/C:TT O{ 514T-w2 | Unlﬁ;%ﬁ;ﬁ;;téo#al % (n(1 + w)?)
Q-SGD O ((1—|—w) Potw”: b) .U.mdlrect}onai_ -
vnT i.1.d, .Unb%aseg
uasoo 0 (fr i o h) e 00
Double Squeeze O ( \/% | 54%2; 2/3 | % ) Béc;ilrfrztcitoisgl O(n3/8%)
CSER O(Fr+mfmm 1) Commane O/
LS 0o + ) — -
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Experiments: synthetic simulation 't 307

* We compare algorithms for least square and logistic regression, using rand-1 compressors and R=4

Least Square, n = 32 Logistic Regression, n = 32
—4— P-SGD —4— P-SGD
—a— MEM-5GD —&- MEM-SGD

©®— Double S5queeze —®— Double Sgueeze
102 - —¥— NEOLITHIC —%¥— NEOLITHIC

109

error
error

lﬂ_lj

1074+ r : 1 - .
0 2000 4000 6000 8000 10000 12000

communication rounds

0 500 1000 1500 2000 2500 3000
communication rounds

 Though with compression, NEOLITHIC almost matches with P-SGD (note P-SGD has no compression)



Experiments: image classification on Cifar-10

8 workers; top-k compressors (contractive); minibatch=128; R=2

Table 1: Accuracy comparison with different algorithms on CIFAR-10.

COMP. RATIO METHODS RESNETI1S8 RESNET20

— PSGD 93.99 + 0.52 91.62 & 0.13
MEM-SGD 94.35 + 0.01 91.27 + 0.08

507 DOUBLE-SQUEEZE 94.11 + 0.14 90.73 £ 0.02

° EF21-SGD 87.37 + 0.49  65.82 + 4.86
NEOLITHIC 94.63 0.09 91.43 = 0.10

MEM-SGD 93.99 + 0.11 89.68 & 0.17

17 DOUBLE-SQUEEZE 93.54 + 0.17 89.35 £+ 0.04

° EF21-SGD 67.78 & 2.14  56.0 & 2.257
NEOLITHIC 94.155 = 0.10 89.82 += 0.37
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Experiments: deep training tasks 39?%

* 8 workers, 1% compression ratio (top-k compressors), minibatch=128, R=2, ResNet18/ResNet20

> e e,
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Experiments: image classification on Cifar-10

* 8 workers; 4-bit quantization (unbiased); minibatch=128; R=2

Table 2: Accuracy comparison with different algorithms on CIFAR-10.

METHODS RESNETI1S RESNET20
PSGD 93.99 £+ 0.52 91.62 £ 0.13
QLSGD 92.86 £ 0.34 90.24+ 0.22

MEM-SGD 94.47 + 0.27 91.36 & 0.07
DOUBLE-SQUEEZE 93.35 &= 0.39 90.89 + 0.14
NEOLITHIC 93.87 -+ 0.46 91.25 + 0.14




Experiments: influence of hyper parameter R

* We empirically investigate the influence of R for the performance of NEOLTHIC

Table 2: Effects of round numbers for CIFAR-10 with ResNet-18

ROUNDS 2 3 4

EOLTHIC(5%) 94.63 + 0.09 93.32
EOLTHIC(1%) 94.16 + 0.10 93.15

- 0.08 92.55 == 0.12 91.48
- 0.11 92.27 == 0.08 91.32

Z Z

- 0.18
- 0.12

* Conjecture: large-batch gradient accumulation helps optimization but may hurt generalization

* Advice: using NEOLTHIC in scenarios that are friendly to large-batch training
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Conclusion AR

ALIBABA DAMO ACADEMY %

Compression can save communication overhead in distributed learning

We established the lower bounds for alg. with uni/bidirectional and unbiased/contractive compression

We developed NEOLITHIC to nearly attain these optimal rates

To further improve the algorithmic performance, we have to explore new compressor properties

rather than consider how to apply unbiased or contractive compressors more cleverly to algorithms.
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Thank youl!

X. Huang, Y. Chen, W. Yin, and K. Yuan, “Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with
Communication Compression”, arXiv 2206.03665, 2022



