
Lower Bounds and Nearly Optimal Algorithms in

Distributed Learning with Communication Compression

Wotao Yin DAMO Academy, Alibaba Group

Joint work with

Xinmeng Huang

(UPenn)

Yiming Chen

(Alibaba)

Kun Yuan

(Alibaba)

Distributed learning

• A network of nodes (GPUs) collaborate to solve the problem:

• Each component is local and private to node

• Random variable denotes the local data that follows distribution

• Each local distribution may be different; data heterogeneity exists

Vanilla parallel stochastic gradient descent (PSGD)

• Each node samples data and computes gradient

• All nodes synchronize (i.e. globally average) to update model per iteration

Expensive communication overhead in PSGD

• Each node sends a full model (or gradient) to the server; proportional to dimension d

• Global average incurs comm. overhead; proportional to network size n

• Each node interacts with the server at every iteration; proportional to iteration numbers

4 8 16 32 64 128

10000

20000

30000

40000

GPUs

T
o
ta

l
im

g
/s

e
c

Huge Communication overhead in PSGD

• PSGD cannot achieve the ideal linear speedup in throughput due to comm. overhead

PSGD Ideal linear speedup

Small comm.-to-compt. ratio

4 8 16 32 64 128

10000

20000

30000

40000

GPUs

T
o
ta

l
im

g
/s

e
c

PSGD Ideal linear speedup

Large comm.-to-compt. ratio

• Larger comm-to-compt ratio leads to worse performance in PSGD

B. Ying, K. Yuan, H. Hu, Y. Chen and W. Yin, “BlueFog: Make decentralized algorithms practical for optimization and deep learning”, arXiv: 2111. 04287, 2021

Methodologies to save communication

• Each node sends a full model (or gradient) to the server; proportional to dimension d

• Global average incurs comm. overhead; proportional to network size n

• Each node interacts with the server at every iteration; proportional to iteration numbers

[Decentralized communication]

[Lazy communication]

[Communication compression]

Takes O(1) comm. overhead

Decentralized SGD (DSGD)

DSGD Algorithm over one-peer exponential graphs

B. Ying, K. Yuan, Y. Chen, H. Hu, P. Pan, and W. Yin, “Exponential Graph is Provably Efficient for Deep Training”, NeurIPS 2021

DSGD is more communication-efficient than PSGD

• We implement DSGD with BlueFog • DSGD has better linear speedup than PSGD

Small comm.-to-compt. ratio Large comm.-to-compt. ratio

B. Ying, K. Yuan, H. Hu, Y. Chen and W. Yin, “BlueFog: Make decentralized algorithms practical for optimization and deep learning”, arXiv: 2111. 04287, 2021

Github address: https://github.com/Bluefog-Lib/bluefog

Lazy communication (Federated Average)

• Nodes communicate once every iterations [Konecny et .al. 2015, 2016]

• Or nodes communicate when necessary, i.e., the lazily aggregated gradient [Chen et. al. 2018]

• In ProxSkip [Mishchenko et. al., 2022], lazy strategy is proved to save communication

[Chen et. al. 2018] T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated gradient for communication-efficient distributed learning”, NeurIPS 2018

(Local update)

(Lazy comm.)

[Konecny et.al. 2016] J. Konecny et.al., “Federated learning: Strategies for improving communication efficiency”, 2016

[Mishchenko et.al. 2016] K. Mishchenko et.al., “ProxSkip: Yes! Local gradient steps provably lead to communication acceleration! Finally!”, ICML 2022

This talk will study distributed learning with communication compression

Communication compression

• A basic (but not state-of-the-art) algorithm is QSGD [Alistarh et. al., 2017]

• is a compressor. It can quantize or sparsify the full gradient

8 bit

1 bit

Quantization

Communication compression

• A basic (but not state-of-the-art) algorithm is QSGD [Alistarh et. al., 2017]

• is a compressor. It can quantize or sparsify the full gradient

8 bit

Sparsification

8 bit

Communication compression algorithms

• There are extensive studies in distributed learning with communication compression

Unidirectional compression Bidirectional compression
Compression

strategy

• The combination of different compressors, algorithms, and strategies gives rise to

Q-SGD [Alistarh et. al., 2017], Mem-SGD [Stich et. al., 2018], EF21-SGD [Fatkhullin et. al., 2021],

CSER [Xie et.al., 2020], Double Squeeze [Tang et. al., 2019], Artemis [Philippenko et.al. 2022], etc.

StaticQuant Random-K Top-KAdaptQuantCompressor ……

Compress

model

Compress

gradient

Compress

difference

Error

feedback

Algorithm

development
……

• How to understand the performance of different algorithms?

Function class and gradient oracle class

• Function class. We let denote the set of all functions satisfying Assumption 1

• Gradient oracle class. Each worker accesses local gradient via a stochastic oracle

Assump. 2 (Stochastic gradient)

Assumption 1 (Smoothness)

Compressor class

• Compressor class. Most compressors in literature are either unbiased or contractive

Assump. 3 (Unbiased compressor)

• Identity operator I (i.e. no compression) is an unbiased compressor with .

• We let denote the set of unbiased compressors satisfying Assumption 3

Compressor class : examles

• Example II (random sparsification [Wangni et.al., 2018]).

• Example I (random quantization [Alistarh et. al. 2017]).

[Alistarh et. al. 2017] D. Alistarh, et. al. , “QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding”, NeurIPS 2017

[Wangni et. al. 2018] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient Sparsification for Communication-Efficient Distributed Optimization”, NeurIPS 2018

Compressor class

• We let denote the family of contractive compressors satisfying Assumption 4

Assump. 4 (Contractive compressor)

• Identity operator I (i.e. no compression) is a contractive compressor with .

Compressor class

• Example II (random sketching [Stich, 2020]).

• Example I (top-k/rand-k [Stich et. al., 2018]).

[Stich et. al., 2018] S. Stich, J. Cordonnier, and M. Jaggi, “Sparsified SGD with Memory”, NeurIPS 2018

[Stich, 2018] S. Stich, “On Communication Compression for Distributed Optimization on Heterogeneous Data”, ArXiv 2020

Algorithm class

• Workers communicate directed with a central server. All iterations are synchronized.

• Each worker is endowed with . • Server is endowed with compressor .

• If some , then worker conducts no compression. If , then compression is unidirectional

• Zero-respecting property: # non-zeros increase only by local update or comm. with the server

Existing convergence rates (non-convex)

Existing convergence rate (non-convex)

• When is sufficiently large so that dominates the rate, the algorithm achieves linear speedup

• Transient iterations refer to those before an algorithm achieves linear speedup

Quantized SGD

Parallel SGD
o Reflect sensitivity to compressions

o The shorter the better

EF21-SGD and Q-SGD cannot achieve linear speedup

Existing convergence rate (non-convex)

• When is sufficiently large so that dominates the rate, the algorithm achieves linear speedup

• Transient iterations refer to those before an algorithm achieves linear speedup

o Reflect sensitivity to compressions

o The shorter the better

EF21-SGD and Q-SGD cannot achieve linear speedup

• Mem-SGD, Double Squeeze, and CSER additionally require bounded gradients

What is the optimal convergence rate for approaches using or ?

Mathematical formulation

• To address these questions, we consider the following formulation

where are the output of algorithm with no more than
gradient queries and communications on each worker

• In other words, given a class of functions , gradient oracles , compressors (being

or), the formulation seeks the optimal algorithm and the convergence rate it has.

Why supremum over compressors?

• To gauge the algorithmic performance over the entire family of unbiased or contractive compressors

• To gauge the algorithmic performance without further assumptions on compressors

Lower bounds for unbiased compressors

• When and , it recovers the bound in stochastic non-convex optimization [Arjevani 2022]

• When , and , it recovers deterministic non-convex optimization [Carmon 2022]

Theorem 1 (Unidirectional unbiased compression)

Lower bounds for unbiased compressors

Corollary 1 (Bidirectional unbiased compression)

• Unidirectional and bidirectional unbiased compression share the same lower bound

Lower bounds for contractive compressors

Theorem 2 (Unidirectional contractive compression)

• The same bound also holds for bidirectional contractive compression

Have the lower bound limits been attained by existing algorithms?

Not yet …

• A big gap exists between established lower bound and existing upper bounds

• For example, contractive lower bound tran. compl. is far shorter than existing ones

Can we develop new algorithms to (nearly) achieve these lower bounds?

Fast compressed communication (FCC)

• We propose a novel module named as fast compressed communication (FCC).

• FCC is compatible with both contractive and unbiased compressors.

Fast compressed communication (FCC)

Lemma 1 (FCC property)

• FCC module has rounds of compressions per call

• When , FCC reduces to a standard compression

• When , FCC yields exponentially smaller errors. When , FCC yields lossless compression

• FCC lies between a standard one-round compression and a lossless compression

The backbone: Double Squeeze

• Double Squeeze [Tang et. al., 2019] is effective to conduct uni-/bi-directional compression.

NEOLITHIC: A nearly optimal algorithm

• Change 1: Replace the standard compression with R-round FCC compression

NEOLITHIC: A nearly optimal algorithm

• Change 2: Conduct R-batch gradient accumulation to balance with R-round compression

NEOLITHIC: A nearly optimal algorithm

• NEOLITHIC can conduct either unidirectional or bidirectional compression

• NEOLITHIC is compatible with both unbiased and contractive compression

• For each iteration, NEOLITHIC conducts R gradient calculations and R compressions

• Given compression round budget T, we shall consider T/R iterations in NEOLITHIC for fair comparison

Upper bounds for contractive compressors

Theorem. 3 (NEOLITHIC with bidirectional contractive compression)

• omits logarithmic terms

• Letting , the same lower bound for unidirectional contractive compression also holds

• Recall the established lower bound , we find it is nearly attained

Upper bounds for unbiased compressors

Theorem. 4 (NEOLITHIC with bidirectional unbiased compression)

• NEOLITHIC also attains the lower bound with unidirectional unbiased compression

• Recall the established lower bound , we find it is nearly attained by NEOLITHIC

NEOLITHIC (nearly) attains the optimal convergence rate

Experiments: synthetic simulation

• We compare algorithms for least square and logistic regression, using rand-1 compressors and R=4

• Though with compression, NEOLITHIC almost matches with P-SGD (note P-SGD has no compression)

Experiments: image classification on Cifar-10

• 8 workers; top-k compressors (contractive); minibatch=128; R=2

Experiments: deep training tasks

• 8 workers, 1% compression ratio (top-k compressors), minibatch=128, R=2, ResNet18/ResNet20

• 8 workers; 4-bit quantization (unbiased); minibatch=128; R=2

Experiments: image classification on Cifar-10

Experiments: influence of hyper parameter R

• We empirically investigate the influence of for the performance of NEOLTHIC

• Conjecture: large-batch gradient accumulation helps optimization but may hurt generalization

• Advice: using NEOLTHIC in scenarios that are friendly to large-batch training

Conclusion

• Compression can save communication overhead in distributed learning

• We established the lower bounds for alg. with uni/bidirectional and unbiased/contractive compression

• We developed NEOLITHIC to nearly attain these optimal rates

• To further improve the algorithmic performance, we have to explore new compressor properties

rather than consider how to apply unbiased or contractive compressors more cleverly to algorithms.

Thank you!

X. Huang, Y. Chen, W. Yin, and K. Yuan, “Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with

Communication Compression”, arXiv 2206.03665, 2022

