

Lower Bounds and Nearly Optimal Algorithms in **Distributed Learning with Communication Compression**

Wotao Yin

DAMO Academy, Alibaba Group

Joint work with

Xinmeng Huang (UPenn)

Yiming Chen (Alibaba)

Kun Yuan (Alibaba)

Distributed learning

A network of n nodes (GPUs) collaborate to solve the problem: •

$$\min_{x \in \mathbb{R}^d} \quad f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x), \quad \text{where} \quad f_i(x) = \mathbb{E}_{\xi_i \sim D_i} F(x;\xi_i).$$

- Each component $f_i : \mathbb{R}^d \to \mathbb{R}$ is local and private to node *i*
- Random variable ξ_i denotes the local data that follows distribution D_i ullet
- Each local distribution D_i may be different; data heterogeneity exists •

Vanilla parallel stochastic gradient descent (PSGD)

$$g_i^{(k)} = \nabla F(x^{(k)}; \xi_i^{(k)})$$
$$x^{(k+1)} = x^{(k)} - \frac{\gamma}{n} \sum_{i=1}^n g_i^{(k)}$$

- Each node *i* samples data $\xi_i^{(k)}$ and computes gradient $\nabla F(x^{(k)};\xi_i^{(k)})$

(Global comm.)

• All nodes synchronize (i.e. globally average) to update model x per iteration

Expensive communication overhead in PSGD

- **Global average** incurs O(n) comm. overhead; proportional to network size n •
- Each node sends a **full model** (or gradient) to the server; **proportional to dimension d** •
- Each node interacts with the server at every iteration; proportional to iteration numbers

Huge Communication overhead in PSGD

- PSGD cannot achieve the ideal linear speedup in throughput due to comm. overhead ullet
- Larger comm-to-compt ratio leads to worse performance in PSGD ullet

Small comm.-to-compt. ratio

B. Ying, K. Yuan, H. Hu, Y. Chen and W. Yin, "BlueFog: Make decentralized algorithms practical for optimization and deep learning", arXiv: 2111. 04287, 2021

Large comm.-to-compt. ratio

Methodologies to save communication

Global average incurs O(n) comm. overhead; proportional to network size n •

[Decentralized communication]

Each node interacts with the server at **every** iteration; proportional to iteration numbers

[Lazy communication]

Each node sends a **full model** (or gradient) to the server; proportional to dimension d •

[Communication compression]

Decentralized SGD (DSGD)

B. Ying, K. Yuan, Y. Chen, H. Hu, P. Pan, and W. Yin, "Exponential Graph is Provably Efficient for Deep Training", NeurIPS 2021

DSGD is more communication-efficient than PSGD

We implement DSGD with BlueFog lacksquare•

B. Ying, K. Yuan, H. Hu, Y. Chen and W. Yin, "BlueFog: Make decentralized algorithms practical for optimization and deep learning", arXiv: 2111.04287, 2021

Github address: https://github.com/Bluefog-Lib/bluefog

DSGD has **better linear speedup** than PSGD

Lazy communication (Federated Average)

$$x_{i}^{(k+\frac{1}{2})} = x_{i}^{(k)} - \gamma \nabla F(x_{i}^{(k)}; \xi_{i}^{(k)}; x_{i}^{(k+\frac{1}{2})})$$
$$x_{i}^{(k+1)} = \begin{cases} x_{i}^{(k+\frac{1}{2})} \\ \frac{1}{n} \sum_{j=1}^{n} x_{j}^{(k+\frac{1}{2})} \end{cases}$$

- Nodes communicate once every τ iterations [Konecny et .al. 2015, 2016]

[Konecny et.al. 2016] J. Konecny et.al., "Federated learning: Strategies for improving communication efficiency", 2016 [Chen et. al. 2018] T. Chen, G. Giannakis, T. Sun, and W. Yin, "LAG: Lazily aggregated gradient for communication-efficient distributed learning", NeurIPS 2018 [Mishchenko et.al. 2016] K. Mishchenko et.al., "ProxSkip: Yes! Local gradient steps provably lead to communication acceleration! Finally!", ICML 2022

$^{k)})$	(Local update)
if $mod(k, \tau) \neq 0$ if $mod(k, \tau) = 0$	(Lazy comm.)

• Or nodes communicate when necessary, i.e., the lazily aggregated gradient [Chen et. al. 2018]

• In ProxSkip [Mishchenko et. al., 2022], lazy strategy is proved to save communication

This talk will study distributed learning with communication compression

Communication compression

A basic (but not state-of-the-art) algorithm is QSGD [Alistarh et. al., 2017] ullet

$$g_i^{(k)} = \nabla F(x_i^{(k)}; \xi_i^{(k)})$$
$$x_i^{(k+1)} = x_i^{(k)} - \frac{\gamma}{n} \sum_{j=1}^n C(g_j^{(k)})$$

 $C(\cdot)$ is a compressor. It can quantize or sparsify the full gradient \bullet

Quantization

Communication compression

A basic (but not state-of-the-art) algorithm is QSGD [Alistarh et. al., 2017] ullet

$$g_i^{(k)} = \nabla F(x_i^{(k)}; \xi_i^{(k)})$$
$$x_i^{(k+1)} = x_i^{(k)} - \frac{\gamma}{n} \sum_{j=1}^n C(g_j^{(k)})$$

 $C(\cdot)$ is a compressor. It can quantize or sparsify the full gradient

Sparsification

Communication compression algorithms

There are extensive studies in distributed learning with communication compression \bullet

The combination of different compressors, algorithms, and strategies gives rise to ullet

How to understand the performance of different algorithms?

Q-SGD [Alistarh et. al., 2017], Mem-SGD [Stich et. al., 2018], EF21-SGD [Fatkhullin et. al., 2021], CSER [Xie et.al., 2020], Double Squeeze [Tang et. al., 2019], Artemis [Philippenko et.al. 2022], etc.

Function class $\mathcal{F}_{\Delta,L}$ and gradient oracle class \mathcal{O}_{σ^2}

- **Function class.** We let $\mathcal{F}_{\Delta,L}$ denote the set of all functions satisfying Assumption 1 •
 - $\|\nabla f_i(x) \nabla f_i(y)\|$

lacksquare

$$\mathbb{E}_{\zeta_i}[O_i(x;\zeta_i)] = \nabla f_i(x) \quad \text{and} \quad \mathbb{E}_{\zeta_i}[O_i(x;\zeta_i)] = \nabla f_i(x) \quad \mathbb{E}_{\zeta_i}[O_i(x;\zeta_$$

Assumption 1 (Smoothness) Each local objective f_i has L-Lipschitz gradient, i.e.,

$$\leq L \|x - y\|, \quad \forall \, x, y \in \mathbb{R}^d,$$

and $f(x^{(0)}) - \inf_{x \in \mathbb{R}^d} f(x) \leq \Delta$ with $f = \frac{1}{n} \sum_{i=1}^n f_i$.

Gradient oracle class. Each worker accesses local gradient $\nabla f_i(x)$ via a stochastic oracle

Assump. 2 (Stochastic gradient) The gradient oracles $\{O_i : 1 \le i \le n\}$ satisfy

 $\mathbb{E}_{\zeta_i}[\|O_i(x;\zeta_i) - \nabla f_i(x)\|^2] \le \sigma^2, \quad \forall x \in \mathbb{R}^d.$

Compressor class \mathcal{U}_{ω}

- **Compressor class.** Most compressors in literature are either **unbiased** or **contractive** lacksquare
- We let \mathcal{U}_{ω} denote the set of unbiased compressors satisfying Assumption 3 •

pression operator C.

Identity operator I (i.e. no compression) is an unbiased compressor with $\omega=0$. lacksquare

Assump. 3 (Unbiased compressor) The compression operator $C : \mathbb{R}^d \to \mathbb{R}^d$ satisfies

 $\mathbb{E}[C(x)] = x, \quad \mathbb{E}[\|C(x) - x\|^2] \le \omega \|x\|^2, \quad \forall x \in \mathbb{R}^d$

for constant $\omega \geq 0$, where the expectation is taken over the randomness of the com-

Compressor class \mathcal{U}_{ω} : **examles**

Example I (random quantization [Alistarh et. al. 2017]).

For any $\boldsymbol{v} \in \mathbb{R}^n$, $\mathcal{C}(\boldsymbol{v})$ (with tuning parameter s) is defined as $\mathcal{C}(v) = [\|\boldsymbol{v}\|_2 \cdot \operatorname{sgn}(v_k) \cdot \xi(v_k)]_{1 \le k \le d}$ where if $|v_k|/||\boldsymbol{v}|| \in [\ell/s, (\ell+1)/s],$

The associated unbiasedness parameter is $\omega = \min\{d/s^2, \sqrt{d}/s\}.$

Example II (random sparsification [Wangni et.al., 2018]).

For any $\boldsymbol{v} \in \mathbb{R}^n$, $\mathcal{C}(\boldsymbol{v})$ (with tuning parameter ϵ) is defined as $\mathcal{C}(v) = [\|\boldsymbol{v}\|_2 \cdot \text{Bernoulli}(p_k)/p_k]_{1 \le k \le d}$ where ${p_k}_{1 \le k \le d}$ are the solution to $\min \sum_{k=1}^{n} p_k \quad \text{s.t.}$ The associated unbiasedness parameter is $\omega = 1$ -

[Alistarh et. al. 2017] D. Alistarh, et. al., "QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding", NeurIPS 2017 [Wangni et. al. 2018] J. Wangni, J. Wang, J. Liu, and T. Zhang, "Gradient Sparsification for Communication-Efficient Distributed Optimization", NeurIPS 2018

 $\xi(v_k) = \begin{cases} (\ell+1)/s & \text{with prob. } s|v_k|/||v|| - \ell \\ \ell/s & \text{otherwise} \end{cases}$

$$\sum_{k=1}^{d} v_k^2 / p_k \le (1+\epsilon) \|\boldsymbol{v}\|^2.$$

+ ϵ (if the solution exists).

Compressor class C_{δ}

We let \mathcal{C}_{δ} denote the family of contractive compressors satisfying Assumption 4 •

compression operator C.

Identity operator I (i.e. no compression) is a contractive compressor with $\delta = 1$.

- Assump. 4 (Contractive compressor) The compression operator $C : \mathbb{R}^d \to \mathbb{R}^d$ satisfies
 - $\mathbb{E}[\|C(x) x\|^2] \le (1 \delta)\|x\|^2, \quad \forall x \in \mathbb{R}^d$
- for constant $\delta \in (0,1]$, where the expectation is taken over the randomness of the

Compressor class C_{δ}

Example I (top-k/rand-k [Stich et. al., 2018]).

For any $\boldsymbol{v} \in \mathbb{R}^n$, $\mathcal{C}(\boldsymbol{v})$ (with tuning parameter k) is defined by

maintaining the largest k entries or random k entries, and zeroing out the rest.

The associated contraction parameter is $\delta = d/k$.

Example II (random sketching [Stich, 2020]).

For any $\boldsymbol{v} \in \mathbb{R}^n$, $\mathcal{C}(\boldsymbol{v}) = S(S^{\top}S)^{\dagger}S^{\top}\boldsymbol{v}$ with a possibly random matrix S (usually sparse or low-rank). The associated contraction parameter is $\delta = 1 - \|I - S(S^{\top}S)^{\dagger}S^{\top}\|_{2}^{2}$.

[Stich et. al., 2018] S. Stich, J. Cordonnier, and M. Jaggi, "Sparsified SGD with Memory", NeurIPS 2018 [Stich, 2018] S. Stich, "On Communication Compression for Distributed Optimization on Heterogeneous Data", ArXiv 2020

Algorithm class \mathcal{A}

- Workers communicate directed with a **central** server. All iterations are **synchronized**. \bullet
- Each worker $i \in \{1, \dots, n\}$ is endowed with C_i . Server is endowed with compressor C_0 .
- •
- Zero-respecting property: # non-zeros increase only by local update or comm. with the server

If some $C_i = I$, then worker i conducts no compression. If $C_0 = I$, then compression is unidirectional

Existing convergence rates (non-convex)

Algorithm	Convergence Rate	Compression	Trans. Compl.
Q-SGD	$\mathcal{O}\left(\frac{(1+\omega)^{0.5}\sigma + \omega^{0.5}b}{\sqrt{nT}}\right)$	Unidirectional i.i.d, Unbiased	
MEM-SGD	$\mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \frac{G^{2/3}}{\delta^{2/3}T^{2/3}} + \frac{1}{T}\right)$	Unidirectional Contractive	$\mathcal{O}(n^3/\delta^4)$
Double Squeeze	$\mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \frac{G^{2/3}}{\delta^{4/3}T^{2/3}} + \frac{1}{T}\right)$	Bidirectional Contractive	$\mathcal{O}(n^3/\delta^8)$
CSER	$\mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \frac{G^{2/3}}{\delta^{2/3}T^{2/3}} + \frac{1}{T}\right)$	Unidirectional Contractive	$\mathcal{O}(n^3/\delta^4)$
EF21-SGD	$\mathcal{O}\left(\frac{\sigma}{\sqrt{\delta^3 T}} + \frac{1}{\delta T}\right)$	Unidirectional Contractive	

Existing convergence rate (non-convex)

EF21-SGD and Q-SGD cannot achieve linear speedup

- **Transient iterations** refer to those before an algorithm achieves linear speedup ullet
 - Reflect sensitivity to compressions Ο
 - The shorter the better Ο

When T is sufficiently large so that σ/\sqrt{nT} dominates the rate, the algorithm achieves linear speedup

To guarantee $\frac{\sigma}{\sqrt{nT}} \leq \epsilon$, we require $T \geq \frac{\sigma^2}{n\epsilon^2}$ (inversely prop. to *n*)

Existing convergence rate (non-convex)

EF21-SGD and Q-SGD cannot achieve linear speedup

- **Transient iterations** refer to those before an algorithm achieves linear speedup ullet
 - Reflect sensitivity to compressions Ο
 - The shorter the better Ο

When T is sufficiently large so that σ/\sqrt{nT} dominates the rate, the algorithm achieves linear speedup

- To guarantee $\frac{\sigma}{\sqrt{nT}} \leq \epsilon$, we require $T \geq \frac{\sigma^2}{n\epsilon^2}$ (inversely prop. to *n*)

Mem-SGD, Double Squeeze, and CSER additionally require bounded gradients $\mathbb{E}_i \|\nabla f_i(x)\|^2 \leq G$

What is the optimal convergence rate for approaches using \mathcal{C}_{δ} or \mathcal{U}_{ω} ?

Mathematical formulation

• To address these questions, we consider the following formulation

$$\inf_{A \in \mathcal{A}} \sup_{\{C_i\}_{i=0}^n \subseteq \mathcal{C}} \sup_{\{O_i\}_{i=1}^n \subseteq \mathcal{O}_{\sigma^2}} \sup_{\{f_i\}_{i=1}^n \subseteq \mathcal{F}_{\Delta, L}}$$

where $\hat{x}_{A,\{f_i\}_{i=1}^n,\{O_i\}_{i=1}^n,\{C_i\}_{i=0}^n,T}$ are the output of algorithm A with no more than T gradient queries and communications on each worker

or \mathcal{U}_{ω}), the formulation seeks the optimal algorithm and the convergence rate it has.

$$\mathbb{E}\left[\left\|\nabla f(\hat{x}_{A,\{f_i\}_{i=1}^n,\{O_i\}_{i=1}^n,\{C_i\}_{i=0}^n,T})\right\|^2\right].$$

• In other words, given a class of functions $\mathcal{F}_{\Delta,L}$, gradient oracles \mathcal{O}_{σ^2} , compressors \mathcal{C} (being \mathcal{C}_{δ}

Why supremum over compressors?

$$\inf_{A \in \mathcal{A}} \sup_{\{C_i\}_{i=0}^n \subseteq \mathcal{C}} \sup_{\{O_i\}_{i=1}^n \subseteq \mathcal{O}_{\sigma^2}} \sup_{\{f_i\}_{i=1}^n \subseteq \mathcal{F}_{\Delta,L}} \mathbb{E}[\|\nabla f(\hat{x}_{A,\{f_i\}_{i=1}^n,\{O_i\}_{i=1}^n,\{C_i\}_{i=0}^n,T})\|^2]$$

- To gauge the algorithmic performance without further assumptions on compressors

• To gauge the algorithmic performance over the entire family of unbiased or contractive compressors

Theorem 1 (Unidirectional unbiased compression)

For every Δ , L > 0, $n \ge 2$, $\omega \ge 0$, $\sigma > 0$, $T \ge (1 + \omega)^2$, there exists a set of local loss functions $\{f_i\}_{i=1}^n \subseteq \mathcal{F}_{\Delta,L}$, stochastic gradient oracles $\{O_i\}_{i=1}^n \subseteq \mathcal{O}_{\sigma^2}$, ω -unbiased compressors $\{C_i\}_{i=0}^n \subseteq \mathcal{U}_{\omega}$ with $C_0 = I$, such that for any algorithm $A \in \mathcal{A}$ starting from a given constant $x^{(0)}$, it holds that

 $\mathbb{E}[\|\nabla f(\hat{x}_{A,\{f_i\}_{i=1}^n,\{O_i\}_{i=1}^n,\{C_i\}_{i=0}^n,T]}]$

$$)\|^{2}] = \Omega\left(\left(\frac{\Delta L\sigma^{2}}{nT}\right)^{\frac{1}{2}} + \frac{(1+\omega)\Delta L}{T}\right)$$

• When n = 1 and $\omega = 0$, it recovers the bound in stochastic non-convex optimization [Arjevani 2022]

• When n = 1, $\omega = 0$ and $\sigma^2 = 0$, it recovers deterministic non-convex optimization [Carmon 2022]

Corollary 1 (Bidirectional unbiased compression)

Under the same settings, there exists a set of local objectives $\{f_i\}_{i=1}^n \subseteq \mathcal{F}_{\Delta,L}$, stochastic gradient oracles $\{O_i\}_{i=1}^n \subseteq \mathcal{O}_{\sigma^2}$, ω -unbiased compressors $\{C_i\}_{i=0}^n \subseteq$ \mathcal{U}_{ω} such that for any algorithm $A \in \mathcal{A}$ starting from $x^{(0)}$, the same lower bound is also valid

Unidirectional and bidirectional unbiased compression share the same lower bound

Theorem 2 (Unidirectional contractive compression)

For every $\Delta, L > 0, n \ge 2, \omega \ge 0, \sigma > 0, T \ge \delta^{-22}$, there exists a set of local loss functions $\{f_i\}_{i=1}^n \subseteq \mathcal{F}_{\Delta,L}$, stochastic gradient oracles $\{O_i\}_{i=1}^n \subseteq \mathcal{O}_{\sigma^2}$, ω -unbiased compressors $\{C_i\}_{i=0}^n \subseteq \mathcal{U}_{\omega}$ with $C_0 = I$, such that for any algorithm $A \in \mathcal{A}$ starting from a given constant $x^{(0)}$, it holds that

 $\mathbb{E}[\|\nabla f(\hat{x}_{A,\{f_i\}_{i=1}^n,\{O_i\}_{i=1}^n,\{C_i\}_{i=1$

The same bound also holds for bidirectional contractive compression

$$\Psi_{=0},T)\|^{2}] = \Omega\left(\left(\frac{\Delta L\sigma^{2}}{nT}\right)^{\frac{1}{2}} + \frac{\Delta L}{\delta T}\right)$$

Have the lower bound limits been attained by existing algorithms?

	Algorithm	Convergence Rate	Compression	Trans. Compl.
Lower Bound	Theorem 2	$\Omega\left(\frac{\sigma}{\sqrt{nT}} + \frac{1}{\delta T}\right)$	Uni/Bidirectional Contractive	$\mathcal{O}(n/\delta^2)$
	Theorem 1	$\Omega\left(\frac{\sigma}{\sqrt{nT}} + \frac{1+\omega}{T}\right)$	Uni/Bidirectional Unbiased	$\mathcal{O}\left(n(1+\omega)^2\right)$
Upper Bound	Q-SGD	$\mathcal{O}\left(\frac{(1+\omega)^{0.5}\sigma + \omega^{0.5}b}{\sqrt{nT}}\right)$	Unidirectional i.i.d, Unbiased	
	MEM-SGD	$\mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \frac{G^{2/3}}{\delta^{2/3}T^{2/3}} + \frac{1}{T}\right)$	Unidirectional Contractive	$\mathcal{O}(n^3/\delta^4)$
	Double Squeeze	$\mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \frac{G^{2/3}}{\delta^{4/3}T^{2/3}} + \frac{1}{T}\right)$	Bidirectional Contractive	$\mathcal{O}(n^3/\delta^8)$
	CSER	$\mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \frac{G^{2/3}}{\delta^{2/3}T^{2/3}} + \frac{1}{T}\right)$	Unidirectional Contractive	$\mathcal{O}(n^3/\delta^4)$
	EF21-SGD	$\mathcal{O}\left(\frac{\sigma}{\sqrt{\delta^3 T}} + \frac{1}{\delta T}\right)$	Unidirectional Contractive	

- A big gap exists between established lower bound and existing upper bounds

• For example, contractive lower bound tran. compl. $O(n/\delta^2)$ is far shorter than existing ones

Can we develop new algorithms to (nearly) achieve these lower bounds?

Fast compressed communication (FCC)

- We propose a novel module named as fast compressed communication (FCC).
- FCC is compatible with both contractive and unbiased compressors.

Algorithm 1 $v^{(k,R)} = FCC(v^{(k,\star)}, C, R, \text{target receiver}(s))$ **Input:** The vector $v^{(k,\star)}$ aimed to communicate at iteration k; a compressor C; rounds R; initial vector $v^{(k,0)} = 0$; target receiver(s); for $r = 0, \cdots, R - 1$ do Compress $v^{(k,\star)} - v^{(k,r)}$ into $c^{(k,r)}$ = Send $c^{(k,r)}$ to the target receiver(s) Update $v^{(k,r+1)} = v^{(k,r)} + c^{(k,r)}$

▷ The set $\{c^{(k,r)}\}_{r=0}^{R-1}$ will be sent to the receiver during the for-loop end for **return** Variable $v^{(k,R)}$. \triangleright It holds that $v^{(k,R)} = \sum_{r=0}^{R-1} c^{(k,r)}$

$$= C(v^{(k,\star)} - v^{(k,r)})$$

Fast compressed communication (FCC)

- FCC module has R rounds of compressions per call
- When R = 1, FCC reduces to a standard compression $v^{(k,1)} = C(v^{(k,\star)})$

Lemma 1 (FCC property)

Let C be a δ -contractive compressor a for any R > 1 and $v^{(k,\star)} \in \mathbb{R}^d$ that $\mathbb{E}[\|v^{(k,R)} - v^{(k,\star)}\|^2] < (1-\delta)^R \|v^{(k,\star)}\|^2, \quad \forall k = 0, 1, 2, \cdots.$

• FCC lies between a standard one-round compression and a lossless compression

• When R > 1, FCC yields exponentially smaller errors. When $R \to \infty$, FCC yields lossless compression

and
$$v^{(k,R)} = FCC(v^{(k,\star)}, C, R)$$
. It holds

The backbone: Double Squeeze

• Double Squeeze [Tang et. al., 2019] is effective to conduct uni-/bi-directional compression.

Algorithm 1: Double Squeeze

Input: Initialize $x^{(0)}$; learning rate γ ; co for $k = 0, 1, \dots, K - 1$ do **On all workers in parallel:**

> Query stochastic gradients $\hat{g}_i^{(k)} = O_i(x^{(k)}; \zeta_i^{(k,0)})$ Error compensate $\tilde{g}_i^{(k)} = \hat{g}_i^{(k)} + v_i^{(k)}$ Update error $v_i^{(k+1)} = \tilde{q}_i^{(k)} - C_i(\tilde{q}_i^{(k)})$

On server:

Error compensate $\tilde{g}^{(k)} = \frac{1}{n} \sum_{i=1}^{n} C_i(\tilde{g}_i^{(k)}) + v^{(k)}$ Update error $v^{(k+1)} = \tilde{q}^{(k)} - C_0(\tilde{q}^{(k)})$ **On all workers in parallel:**

Update model parameter $x^{(k+1)} = x^{(k)} - \gamma C_0(\tilde{g}^{(k)})$ end for

ompression round R;
$$v^{(0)} = v_i^{(0)} = 0, \forall i \in [n]$$

- ▷ Gradient calculation
- \triangleright Worker sends $C_i(\tilde{g}_i^{(k)})$ to server
- $\triangleright C_i(\tilde{g}_i^{(k)})$ received from workers \triangleright Server sends $C_0(\tilde{g}^{(k)})$ to workers
- $\triangleright C_0(\tilde{g}^{(k)})$ received from server

NEOLITHIC: A nearly optimal algorithm

Change 1: Replace the standard compression with R-round FCC compression

Algorithm 1: NEOLITHIC

Input: Initialize $x^{(0)}$; learning rate γ ; compress for $k = 0, 1, \cdots, K - 1$ do

On all workers in parallel:

Query stochastic gradients $\hat{g}_i^{(k)} = \frac{1}{R} \sum_{r=0}^{R-1} \hat{g}_i^{(k)}$ Error compensate $\tilde{g}_i^{(k)} = \hat{g}_i^{(k)} + v_i^{(k)}$ Update error $v_i^{(k+1)} = \tilde{q}_i^{(k)} - \text{FCC}(\tilde{q}_i^{(k)}, C_i, R, \text{server})$ **On server:**

Error compensate $\tilde{g}^{(k)} = \frac{1}{n} \sum_{i=1}^{n} \sum_{r=0}^{R-1} c_i^{(k,r)} + v^{(k)}$ Update error $v^{(k+1)} = \tilde{q}^{(k)} - \text{FCC}(\tilde{q}^{(k)}, C_0, R, \text{all workers})$ **On all workers in parallel:**

Update model parameter $x^{(k+1)} = x^{(k)} - \gamma \sum_{r=0}^{R-1} c^{(k,r)}$ end for

sion round *R*;
$$v^{(0)} = v_i^{(0)} = 0, \forall i \in [n]$$

$${}^{-1}_{0}O_{i}(x^{(k)};\zeta_{i}^{(k,r)})$$

- ▷ Gradient accumulation
- \triangleright Worker sends $\{c_i^{(k,r)}\}$ to server
- $\triangleright \{c_i^{(k,r)}\}$ received from workers \triangleright Server sends $\{c^{(k,r)}\}$ to workers
- $\triangleright \{c^{(k,r)}\}$ received from server

NEOLITHIC: A nearly optimal algorithm

Change 2: Conduct R-batch gradient accumulation to balance with R-round compression

Algorithm 1: NEOLITHIC

Input: Initialize $x^{(0)}$; learning rate γ ; compl for $k = 0, 1, \cdots, K - 1$ do **On all workers in parallel:** Query stochastic gradients $\hat{g}_i^{(k)} = \frac{1}{R} \sum_{k=1}^{\infty} \hat{g}_i^{(k)}$ Error compensate $\tilde{g}_i^{(k)} = \hat{g}_i^{(k)} + v_i^{(k)}$ Update error $v_i^{(k+1)} = \tilde{q}_i^{(k)} - \text{FCC}(\tilde{q}_i^{(k)}, C_i, R, \text{server})$ **On server:** Error compensate $\tilde{g}^{(k)} = \frac{1}{n} \sum_{i=1}^{n} \sum_{r=0}^{R-1} c_i^{(k,r)} + v^{(k)}$ Update error $v^{(k+1)} = \tilde{q}^{(k)} - \text{FCC}(\tilde{q}^{(k)}, C_0, R, \text{all workers})$ **On all workers in parallel:**

Update model parameter $x^{(k+1)} = x^{(k)} - \gamma \sum_{r=0}^{R-1} c^{(k,r)}$ end for

ression round R;
$$v^{(0)} = v_i^{(0)} = 0, \forall i \in [n]$$

$$\sum_{r=0}^{R-1} O_i(x^{(k)}; \zeta_i^{(k,r)})$$

- ▷ Gradient accumulation
- \triangleright Worker sends $\{c_i^{(k,r)}\}$ to server
- $\triangleright \{c_i^{(k,r)}\}$ received from workers \triangleright Server sends $\{c^{(k,r)}\}$ to workers
- $\triangleright \{c^{(k,r)}\}$ received from server

NEOLITHIC: A nearly optimal algorithm

- NEOLITHIC can conduct either unidirectional or bidirectional compression
- NEOLITHIC is compatible with **both unbiased and contractive** compression
- For each iteration, NEOLITHIC conducts R gradient calculations and R compressions

• Given compression round budget T, we shall consider T/R iterations in NEOLITHIC for fair comparison

Upper bounds for contractive compressors

Theorem. 3 (NEOLITHIC with bidirectional contractive compression)

Given any constants $n \ge 1$, $\delta \in (0,1]$, assume $\frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(x) - \nabla f(x)\|^2 \le b^2$ for any $x \in \mathbb{R}^d$, and let $x^{(k)}$ be generated by NEOLITHIC. By setting R and the learning rate appropriately, it holds for any $K \ge 0$ and compressors $\{C_i\}_{i=0}^n \subseteq \mathcal{C}_{\delta}$ that

$$\frac{1}{K+1} \sum_{k=0}^{K} \mathbb{E}\left[\|\nabla f(x^{(k)})\|^2 \right] = \tilde{\mathcal{O}}\left(\left(\frac{\Delta L \sigma^2}{nT} \right)^{\frac{1}{2}} + \frac{\Delta L}{\delta T} \right)$$

where T = KR is the total number of gradient queries (communication rounds) on each worker.

- $\mathcal{O}(\cdot)$ omits logarithmic terms
- Recall the established lower bound Ω

$$\left(\frac{\Delta L \sigma^2}{nT}\right)^{\frac{1}{2}} + \frac{\Delta L}{\delta T}$$
, we find it is **nearly attained**

• Letting $C_0 = I$, the same lower bound for unidirectional contractive compression also holds

Theorem. 4 (NEOLITHIC with bidirectional unbiased compression)

Under the same assumptions as in Theorem 1, it holds for any $K \ge 0$ and compressors $\{C_i\}_{i=0}^n \subseteq \mathcal{U}_{\omega}$ that $\frac{1}{K+1} \sum_{k=0}^{K} \mathbb{E}[\|\nabla f(x^{(k)})\|^2] = \tilde{\mathcal{O}}\left(\left(\frac{\Delta L\sigma^2}{nT}\right)^{\frac{1}{2}} + \frac{(1+\omega)\Delta L}{T}\right).$ This further leads to a transient complexity of $\tilde{\mathcal{O}}(n(1+\omega)^2)$.

- NEOLITHIC also attains the lower bound with unidirectional unbiased compression

• Recall the established lower bound $\Omega\left(\left(\frac{\Delta L\sigma^2}{nT}\right)^{\frac{1}{2}} + \frac{(1+\omega)\Delta L}{T}\right)$, we find it is nearly attained by NEOLITHIC

NEOLITHIC (nearly) attains the optimal convergence rate

	Algorithm	Convergence Rate	Compression	Trans. Compl.
Lower Bound	Theorem 2	$\Omega\left(\frac{\sigma}{\sqrt{nT}} + \frac{1}{\delta T}\right)$	Uni/Bidirectional Contractive	$\mathcal{O}(n/\delta^2)$
	Theorem 1	$\Omega\left(\frac{\sigma}{\sqrt{nT}} + \frac{1+\omega}{T}\right)$	Uni/Bidirectional Unbiased	$\mathcal{O}\left(n(1+\omega)^2\right)$
Upper Bound	Theorem 3	$\tilde{\mathcal{O}}\left(rac{\sigma}{\sqrt{nT}}+rac{1}{\delta T} ight)$	Uni/Bidirectional Contractive	$ ilde{\mathcal{O}}(n/\delta^2)$
	Theorem 4	$\tilde{\mathcal{O}}\left(\frac{\sigma}{\sqrt{nT}} + \frac{1+\omega}{T}\right)$	Uni/Bidirectional Unbiased	$ ilde{\mathcal{O}}(n(1+\omega)^2)$
	Q-SGD	$\mathcal{O}\left(\frac{(1+\omega)^{0.5}\sigma + \omega^{0.5}b}{\sqrt{nT}}\right)$	Unidirectional i.i.d, Unbiased	
	MEM-SGD	$\mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \frac{G^{2/3}}{\delta^{2/3}T^{2/3}} + \frac{1}{T}\right)$	Unidirectional Contractive	$\mathcal{O}(n^3/\delta^4)$
	Double Squeeze	$\mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \frac{G^{2/3}}{\delta^{4/3}T^{2/3}} + \frac{1}{T}\right)$	Bidirectional Contractive	$\mathcal{O}(n^3/\delta^8)$
	CSER	$\mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \frac{G^{2/3}}{\delta^{2/3}T^{2/3}} + \frac{1}{T}\right)$	Unidirectional Contractive	$\mathcal{O}(n^3/\delta^4)$
	EF21-SGD	$\mathcal{O}\left(\frac{\sigma}{\sqrt{\delta^3 T}} + \frac{1}{\delta T}\right)$	Unidirectional Contractive	

Experiments: synthetic simulation

• We compare algorithms for **least square** and **logistic regression**, using rand-1 compressors and R=4

• Though with compression, NEOLITHIC almost matches with P-SGD (note P-SGD has no compression)

Experiments: image classification on Cifar-10

• 8 workers; top-k compressors (contractive); minibatch=128; R=2

Comp. ratio	Methods	ResNet18	ResNet20
	PSGD	93.99 ± 0.52	91.62 ± 0.13
5%	MEM-SGD	94.35 ± 0.01	91.27 ± 0.08
	Double-Squeeze	94.11 ± 0.14	90.73 ± 0.02
	EF21-SGD	87.37 ± 0.49	65.82 ± 4.86
	NEOLITHIC	94.63 ± 0.09	91.43 ± 0.10
1%	MEM-SGD	93.99 ± 0.11	89.68 ± 0.17
	Double-Squeeze	93.54 ± 0.17	89.35 ± 0.04
	EF21-SGD	67.78 ± 2.14	56.0 ± 2.257
	NEOLITHIC	94.155 ± 0.10	89.82 ± 0.37

Table 1: Accuracy comparison with different algorithms on CIFAR-10.

Experiments: deep training tasks

• 8 workers, 1% compression ratio (top-k compressors), minibatch=128, R=2, ResNet18/ResNet20

Experiments: image classification on Cifar-10

• 8 workers; 4-bit quantization (unbiased); minibatch=128; R=2

Table 2: Accuracy comparison with different algorithms on CIFAR-10.

Methods	ResNet18	ResNet20
PSGD	93.99 ± 0.52	91.62 ± 0.13
QSGD	92.86 ± 0.34	90.24 ± 0.22
MEM-SGD	94.47 ± 0.27	91.36 ± 0.07
DOUBLE-SQUEEZE	93.35 ± 0.39	90.89 ± 0.14
NEOLITHIC	93.87 ± 0.46	91.25 ± 0.14

Experiments: influence of hyper parameter R

• We empirically investigate the influence of R for the performance of NEOLTHIC

Table 2: Effects of round numbers for CIFAR-10 with ResNet-18

Rounds

 $\mathbf{2}$

NEOLTHIC(5%) 94.63 \pm 0.09 9 NEOLTHIC(1%) 94.16 \pm 0.10 9

- Conjecture: large-batch gradient accumulation helps optimization but may hurt generalization
- Advice: using NEOLTHIC in scenarios that are friendly to large-batch training

3	4	5
	92.55 ± 0.12 92.27 ± 0.08	

Conclusion

- Compression can save communication overhead in distributed learning
- We established the lower bounds for alg. with uni/bidirectional and unbiased/contractive compression

• We developed NEOLITHIC to nearly attain these optimal rates

• To further improve the algorithmic performance, we have to explore new compressor properties rather than consider how to apply unbiased or contractive compressors more cleverly to algorithms.

Thank you!

X. Huang, Y. Chen, W. Yin, and K. Yuan, "Lower Bounds Communication Compression", arXiv 2206.03665, 2022

X. Huang, Y. Chen, W. Yin, and K. Yuan, "Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with