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Abstract

‘We introduce ProxSkip—a surprisingly simple
and provably efficient method for minimizing the
sum of a smooth (f) and an expensive nonsmooth
proximable () function. The canonical approach
to solving such problems is via the proximal gra-
dient descent (ProxGD) algorithm, which is based
on the evaluation of the gradient of f and the prox
operator of 9 in each iteration. In this work we are
specifically interested in the regime in whi
evaluation of prox is costly relative to

tion of the gradient, which is the case i

plications. ProxSkip allows for the exzfen

seetieoil T Please accept our apologies, our excitement apparently spilled

is the condition number of f, thefaumbe
evaluations is O(y/k log 1/<) only. Our

meeminfesel - gyer 1nto the title. If we were to choose a more scholarly title for

ing a local GD step indepej.dently on
and evaluation of prox cojiesponds to (e:

wepeiviiael this work, it would be ProxSkip: Breaking the Communication

tive acceleration of fommunication co!

where f: R? — R is a smooth function, and ¢: R? —
R U {400} is a proper, closed and convex regularizer.

Such problem are ubiquitous, and appear in numerous ap-
plications associated with virtually all areas of science
and engineering, including signal processing (Combettes
& Pesquet, 2009), image processing (Luke, 2020), data sci-
ence (Parikh & Boyd, 2014) and machine learning (Shalev-
Shwartz & Ben-David, 2014).

Alternative Title

cemierl Barrier of Local Gradient Methods.

whose theoreticg! communication comy

worse than, or/at best matching, that
GD in the het/rogeneous data regime,
a provable 7ad large improvement witl
heterogeng/ty-bounding assumptions.

1. Introdjiction
‘We study/optimization problems of the form

min f(z) + ¢(z), (1)
zERd
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RAZ K
the L; norm (¥(z) = ||z||1), the Ly norm (%(z) = ||z|3),
and elastic net (Zhou & Hastie, 2005). For many further
examples, we refer the reader to the books (Parikh & Boyd,
2014; Beck, 2017).

1.2. Expensive proximity operators

However, in this work we are interested in the situation
when the evaluation of the proximity operator is expensive.
That is, we assume that the computation of prox,,, (the

T Please accept our apologies, our excitement apparently spilled
over into the title. If we were to choose a more scholarly title for
this work, it would be ProxSkip: Breaking the Communication
Barrier of Local Gradient Methods.

backward step) is costly relative to the evaluation of the
gradient of f (the forward step).

A conceptually simple expensive prox-

om regularizers ¢ encoding a
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Part 1
Introduction



Gradient Descent



Federated Training of a Supervised
Machine Learning Model

n # devices /
machines
. def 1
min f(x) = — ) fi(x)
rERA n “
1=1
# model parameters / features Loss on local data D; stored on device ¢

fi(z) = E¢np, fig(x)

The datasets Dy, ..., D,, can be arbitrarily heterogeneous



Distributed Gradient Descent

Tip1 = X — YV ()

Optimization problem:

ef 1 ¢
min )= 23 i

1 T
— Lt — 75 vaz(xt)
i=1

d-dimensional gradient
computed by machine i



Optimization problem:

Distributed Gradient Descent i 1) 1550

zER4

(Each worker performs using its local function, and the results are averaged)
Worker 1 Worker 2 Worker 3
Receive x4 from the server Receive x4 from the server Receive x4 from the server
1t — Tt T2t — Xt I3t — Tt
1441 =214 — YV i(@1) To 141 = ot — YV fo(Tay) x3141 = X34 — VYV f3(T3)
Server

1 3
Lir1 — g E Lit4+1
1=1

Broadcast x¢y1 to the workers



Distributed Gradient Descent



Optimization problem:

Distributed Gradient Descent .5

(Each worker performs using its local function, and the results are averaged)
Worker 1 Worker 2 Worker 3
Receive z; from the server Receive z; from the server Receive x; from the server
T1t = Tt T2t — Tt I3t — Tt
T1441 = 1,0 — YV f1(T1,4) Tot+1 = Ta — YV f2(22,t) T341 = T3 — YV f3(23,0)
T1t42 = T141 — YV 1(T1,641) To 12 = To 141 — YV fa(T2,641) T3 42 = T3t+1 — YV f3(T3,441)
T14+K = T+ k-1 — YV (2104 K1) To1+K = Top4K—1 — YV 2(22 14 K-1) T34+ K = T30+ K—1 — YV f3(T3,14 K1)
Server
3
1
T+ K = § Tit+K
1=1

Broadcast ;4 x to the workers



From GD to Local GD

Gradient Descent (GD)
Compte Rendu a [’Académie des Sciences

(L. A. Cauchy)

1847
Local GD Proposed

Parallel Gradient Distribution in Unconstrained Optimization
(O. L. Mangasarian)
1995

Federated Averaging: Local GD Plays a Key Role in Federated Learning
Communication-efficient Learning of Deep Networks from Decentralized Data

(H. B. McMahan et al)
2017

First General Theory for Local GD

First Analysis of Local GD on Heterogeneous Data
(Khaled, Mishchenko & R)

2020



Plot taken from:

What do the Local Steps do?

10°

Ahmed Khaled, Konstantin Mishchenko, Peter Richtarik
First Analysis of Local GD on Heterogeneous Data .
NeurlPS 2019 Workshop on Federated Learning for Data Privacy and Confidentiality, 2019 LibSVM mushrooms dataset

—— 1 local step
—eo— 2 local steps
—~— 4 local steps
—<— 8 local steps
—— 16 local steps
——o— 32 local steps

0 5000 10000 15000 20000
Communication rounds

L2-regularized logistic regression



Linearly Converging
Local GD Methods



Relative suboptimality

10-11 4

Local GD with GD-like (=Linear) Convergence

SCAFFOLD
Scaffold: Stochastic Controlled Averaging for Federated Learning
(Karimireddy, Kale, Mohri, Reddi, Stich, Suresh)

2020

S-Local-GD
Local SGD: Unified Theory and New Efficient Methods

(Gorbunov, Hanzely & R)

Type: 0, tau: 5, n: 5 .
—e— SCAFFOLD FedLin
—— LGD . . .
v LGD* Linear Convergence in Federated Learning. . .

(Mitra, Jaafar, Pappas, Hassani)

2021

0

10600 ZO(I)OO 30600 40600 SO(IJOO
Rounds of communication



Key Theoretical Problem in Federated Learning

Local gradient steps are of key importance in FL.

In practice, local steps improve communication
efficiency. But in theory*, they do not!!!

Is the situation hopeless, or can we show
that (appropriately designed) local steps help?



Federated Learning: ProxSkip vs Baselines

Table 1. The performance of federated learning methods employing multiple local gradient steps in the strongly convex regi

# local steps # floats sent stepsize linear rate better
method . .. o # rounds .
per round per round on client ¢ rate? than GD?
GD (Nesterov, 2004) 1 d % / (fj( k) ©
. 1 G2 \@
LocalGD (Khaled et al., 2019; 2020) T d > X @ ( T )
Scaffold (Karimireddy et al., 2020) T 2d L © v O(k) ©
S-Local-GD @ (Gorbunov et al., 2021) T d< # < 2d ® % v
FedLin ® (Mitra et aL,, 2021) T; 2d T,lL v
Scaffnew © (this work) 1 (b d 1 /
D L
for any p € (0, 1] P
Scaffnew © (this work)
(h) 1
for optimal p = —— VK @ L 7

VE
@ This is a special case of S-Local-SVRG, which is a more general method presented in (Gorbunov et al., 2021). S-Local-GD arises as a special case when full gradient
is computed on each client.
® Fed Lin is a variant with a fixed but different number of local steps for each client. Earlier method S-Local-GD has the same update but random loop length.
© The O notation hides logarithmic factors.
@ @G is the level of dissimilarity from the assumption Ly IV fi(=) 1> < G? +2LB? (f(z) — f.), V.
©) We use Scaffold’s cumulative local-global stepsize 7;7 g for a fair comparison.
® The number of sent vectors depends on hyper-parameters, and it is randomized.
® Scaffnew (Algorithm 2) = ProxSkip (Algorithm 1) applied to the consensus formulation (6) + (7) of the finite-sum problem (5).

® ProxSkip (resp. Scaffnew) takes a random number of gradient (resp. local) steps before prox (resp. communication) is computed (resp. performed). What is shown
in the table is the expected number of gradient (resp. local) steps.



Federated Learning: ProxSkip vs Nesterov

—— Nesterov
102 —— ProxSkip
“ 104
|
B
106
108

0 250 500 750 1000 1250 1500 1750 2000
Communication rounds



Part 2
Consensus Reformulation



Consensus Reformulation

mn
. def 1 Bad: Non-differentiable
min {f(x) = = E fz(x)} function
rERA n —

Good: Indicator function of a

@ nonempty closed convex set
optimization in R™?

min Zf@ iy —|—¢($1, )

T1,...,Tn ERA

optimization in R?

def |0, ity = =x,,

Y (X1, e, Ty) =

+00, otherwise.



Generalization 1: Constrained Optimization

def ] 0, iz =-=xy,,
w(azl,...,xn)é . "
+00, otherwise.

optimization in R™¢

Generalization 1

min {iZfz(l’z)‘l-w(ﬂ?l,aﬂ?n)}

" 1 x, ERA

e 07 if )T ydn Ca
Y

+00, otherwise.

Arbitrary closed convex set
(constraint)

L & B B B B B B B & B B B B B B B B B B &N B BN B N &N §N N JBN N N N N N |



Generalization 2: Composite Optimization

def |0, ifx1=---=ux,,
w(azl,...,xn){ !

+00, otherwise.
optimization in R™¢

Generalization 2

min {iZfz(l’z)‘l-w(ﬂ?l,aﬂ?n)}

" 1 x, ERA

WV (z1,...,%,) : R 5 RU {400}

is a proper closed convex function

The epigraph of 9 is a closed and convex set

epi(¥) = {(z,1) | ¥(z) < 1)

L & B B B B B B B & B B B B B B B B B B &N B BN B N &N §N N JBN N N N N N |



Conceptual Simplification: from nd to d’

Composite optimization:

optimization in R™?

Composite optimization:

. . . . /
optimization in R?

min {f(z) +(z)}

xeR’

min {iZfz(fUz)+w($laawn>}

" 1 x, ERA




Part 3
Proximal Gradient Descent



The epigraph of 9 is a closed and convex set

Three Assumptions

epi(y) € {(z,t) € R x R | () < ¢)

min f(x) +(x)

rceRA

° f is p-convex and L-smooth: ° Y : R? - RU {400} is proper, closed, and convex

eyl < Dy(e.y) < &z — o © v is proximavie

i . Rd d
Bregman divergence of f: The proximal operator prox,, : R® — R® defined by

Dy(z,y) = f(z) - fy) = (VS(@),z — y) prox,,(z) < arg min (wu) b2l x||2)

u€ER4

can be evaluated exactly (e.g., in closed form)



Key Method: Proximal Gradient Descent

proximal operator:

e : 1
prox,, () ' arg min (¢(u) + §||u — :c||2)

wERd stepsize

xe =V f(x¢)
I_'_l

gradient operator

r— x—yVf(x)



Proximal Gradient Descent: Theory

f is pu-convex and L-smooth:

Lz —y||? < D¢(x,y) < 2|z — y||?

% is the condition number of f

Theorem:

8> Flogz > lax— &l <elzo — &l

(for stepsize v = )

# iterations def

Error tolerance Tyx = arg affel]lg% f(z) +¥(x)




Part 4
The ProxSkip Algorithm



What to do When the Prox is Expensive?

Can we somehow get away with
fewer evaluations of the proximity operator
in the Proximal GD method?

Approach 1 Approach 2

(ProxSkip)

<¢' We’'ll skip MANY prox evaluations!
‘V’ The method is implementable!

<V’ We’ll skipp ALL prox evaluations!

The method is NOT implementable!

Serves as an inspiration for Approach 2




Approach 1:
Simple, Extreme but
Practically Useless Variant



W

Removing 1) via a Reformulation

h E Vf(CB*)

z, & arg min f(x) + ¥ (x)
z€RM

min f(x) — (hy, x)

rERA

x, 1s a solution of the above problem!

By the 1st order optimality conditions, the solution satisfies Vf(z) — Vf(zx) =0

We do not know hy, = V f(z,)!



Apply Gradient Descent to the Reformulation

he & VF(zy)

z, = arg min f(x) + ¥(x)
rEeR

Tiv1 = Tr — v (Vf(xe) — hy)

<« ) We do not need to evaluate the prox of ¢ at all!

<x> We do not know h, and hence can’t implement the method!



Idea: Try to “Learn” the Optimal Gradient Shift

Desire: h; — h,

Tip1 = ¢ — ¥ (Vf(@r) — hy)

0 Perhaps we can learn h, with only occasional access to 17




Approach 2:
The ProxSkip Method



ProxSkip: The Algorithm (Bird’s Eye View)

Tiv1 =@ — v (VSf(xe) — hy)

with probability 1 — p do Tii1 = Tyq1 hig1 = hy
1l—p=1

evaluate proxy ,(7)
b

with probability p do

?

Li+1 = - I

hii1="1
. t+1




ProxSkip: The Algorithm (Detailed View)

Algorithm 1 ProxSkip

1: stepsize v > 0, probability p > 0, initial iterate zq € RY, initial control variate ~( € R%, number of iterations 7' > 1
2: fort=0,1,..., T — 1do

3:

10:

N A A

Teo1 =x — Y(Vf(zs) — hy) o Take a gradient-type step adjusted via the control variate h;
Flip a coin 6; € {0,1} where Prob(6; = 1) =p ¢ Flip a coin that decides whether to skip the prox or not
if 6; = 1 then

Tt4+1 = ProXz,, (£t+1 — %ht) < Apply prox, but only very rarely! (with small probability p)
else

Tiy1 = i't_|_1 1 Sklp the pI'OX!
end if
hii1 = hy + %(.’L‘t+1 — Ztr1) ¢ Update the control variate /;

11: end for




Part 5
ProxSkip Theory



ProxSkip: Bounding the # of Iterations

Th f is p-convex and L-smooth:
eorem: Llla — yl12 < Dy (@) < il -yl

% is the condition number of f

L 1 1 i
tzmax{ , 2}log8 j £ (U] < el

# iterations Lyapunov function:

def 2
p = probability of \Ijt — ||$t — L% H | 2 9
evaluating the prox L P




ProxSkip: Optimal Prox-Evaluation Probability

Since in each iteration we evaluate the prox with probability p, I - »
: . . : ~ is the condition number of f
the expected number of prox evaluations after ¢ iterations is: M

p-t:p-max{ﬁ,plz}-log%:max{p-%,%}-log%

Computation of optimal p, for % =2

3

Minimized for p satisfying p - % = % 0B
1 g/ :
i Px — —F—— Y=
L///L 0 i 1 2 3 4 5



ProxSkip: # of Gradient and Prox Evaluations

1
RV T

# of iterations S N G L o og?

pp? 3 o €

. . L 1 1 L 1

# of gradient evaluations max ) o9 +log = " log -

Expected # of gradient evaluations 1 L
between 2 prox evaluations p p




Federated Learning: ProxSkip vs Baselines

Table 1. The performance of federated learning methods employing multiple local gradient steps in the strongly convex regi

# local steps # floats sent stepsize linear rate better
method . .. o # rounds .
per round per round on client ¢ rate? than GD?
GD (Nesterov, 2004) 1 d % / (fj( k) ©
. 1 G2 \@
LocalGD (Khaled et al., 2019; 2020) T d > X @ ( T )
Scaffold (Karimireddy et al., 2020) T 2d L © v O(k) ©
S-Local-GD @ (Gorbunov et al., 2021) T d< # < 2d ® % v
FedLin ® (Mitra et aL,, 2021) T; 2d T,lL v
Scaffnew © (this work) 1 (b d 1 /
D L
for any p € (0, 1] P
Scaffnew © (this work)
(h) 1
for optimal p = —— VK @ L 7

VE
@ This is a special case of S-Local-SVRG, which is a more general method presented in (Gorbunov et al., 2021). S-Local-GD arises as a special case when full gradient
is computed on each client.
® Fed Lin is a variant with a fixed but different number of local steps for each client. Earlier method S-Local-GD has the same update but random loop length.
© The O notation hides logarithmic factors.
@ @G is the level of dissimilarity from the assumption Ly IV fi(=) 1> < G? +2LB? (f(z) — f.), V.
©) We use Scaffold’s cumulative local-global stepsize 7;7 g for a fair comparison.
® The number of sent vectors depends on hyper-parameters, and it is randomized.
® Scaffnew (Algorithm 2) = ProxSkip (Algorithm 1) applied to the consensus formulation (6) + (7) of the finite-sum problem (5).

® ProxSkip (resp. Scaffnew) takes a random number of gradient (resp. local) steps before prox (resp. communication) is computed (resp. performed). What is shown
in the table is the expected number of gradient (resp. local) steps.



Part 6
Experiments



Scaffnew (=ProxSkip applied to FL) vs Nesterov

—— Nesterov
102 —— ProxSkip
“ 104
|
B
106
108

0 250 500 750 1000 1250 1500 1750 2000
Communication rounds



Scaffnew (=ProxSkip applied to FL) vs Baselines

10° 10°

T o o % P P 2 . P
—— .

102 - — 102

—u— Local GD Local GD Local GD

<% 10 —e— Scaffold <% 10 —e— Scaffold ] Scaffold
R —— Scaffnew N —— Scaffnew Scaffnew
;i/ 106 FedLin ;i/ 106 FedLin - FedLin
S-Local-GD S-Local-GD S-Local-GD
108 108
10—10 10—10
0 100 200 300 400 500 0 200 400 600 800 1000 200 400 600 800 1000
Communication rounds Communicated vectors Communication rounds
(a) tuned hyper-parameters (b) tuned hyper-parameters (c) theoretical hyper-parameters

Figure 1. Deterministic Problem. Comparison of Scaffnew to other local update methods that tackle data-heterogeneity and to LocalGD. In
(a) we compare communication rounds with optimally tuned hyper-parameters. In (b) we compare communicated vectors (Scaffold, FedLin
and S-Local-GD require transmission of additional variables). In (c), we compare communication rounds with the algorithm parameters set
to the best theoretical stepsizes used in the convergence proofs.

L2-regularized logistic regression: b Rd, b, € {_1’ +1}’ =T /104

w8a dataset from LIBSVM library (Chang & Lin, 2011)

- A
F(@) = = 3" log (1+exp (~bial 2)) + 5 ol

=



Scaffnew (=ProxSkip applied to FL) vs Baselines

10° 10°

—»— Local GD

—e— Scaffold

—+— Scaffnew
FedLin

—&— S-lLocal-GD

—»— Local GD
—e— Scaffold
—+— Scaffnew
FedLin
S-Local-GD

104 102

¥ 10* Scaffold

Scaffnew

= 106 FedLin

S-Local-GD

108 108
10'10 10—10
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
Communication rounds Communicated vectors Communicated rounds
(a) tuned hyper-parameters (b) tuned hyper-parameters (c) theoretical hyper-parameters

Figure 2. Stochastic Problem. Comparison of Scaffnew to other local update methods that tackle data-heterogeneity and to LocalSGD. In
(a) we compare commnication rounds with optimally tuned hyper-parameters. In (b) we compare communicated vectors and in (c), we
compare communication rounds with the algorithm parameters set to the best theoretical stepsizes used in the convergence proofs.

L2-regularized logistic regression: \ b Rd, b, € {_1’ +1}’ =T /104

1 T 2
f(z) = n z; log (1 + exp (_biai a:)) T 5“56” w8a dataset from LIBSVM library (Chang & Lin, 2011)



Part 7
Extensions



* As described, in ProxSkip each worker computes the full gradient of its local function

* It’s often better to consider a cheap stochastic approximation of the gradient instead
* We consider this extension in the paper
* We provide theoretical convergence rates

Vii(ze) = gi(ze)

Full gradient Stochastic gradient

E [gi,t(fﬁt) \ CUt] = qu;(ﬂi‘t)

B |gie @) — V/ (2] | 2] < 24D (w,2,) +C
(Gower et al, 2019)



Extension 2: From Fully Connected Network
to Arbitrary Connected Network

* In each communication round of ProxSkip, each worker sends messages to
all oher workers (e.g., through a server).

* We can think of ProxSkip workers as the nodes of a fully-connected network.
* |n each communication round, all workers communicate with their neighbors.

* In the paper we provide extension to arbitrary connected networks.

Fully connected network Arbitrary connected network



Three Follow-up Papers

Extension 3: Compressing the Prox

Laurent Condat and Peter Richtarik
RandProx: Primal-dual optimization algorithms with randomized proximal updates
arXiv:2207.12891, 2022

Extension 4: Variance Reduction

Extension 5: Less Local Training

Grigory Malinovsky, Kai Yi and Peter Richtarik
Variance reduced ProxSkip: Algorithm, theory and application to federated learning
arXiv:2207.04338, 2022

Abdurakhmon Sadiev, Dmitry Kovalev and Peter Richtarik

Communication acceleration of local gradient methods via an accelerated primal-dual algorithm with inexact prox
arXiv:2207.03957, 2022




The End



