CrossFL 2022

Program

The workshop will take place in Mission Ballroom MR2, Santa Clara Convention Center on the 1st of September 2022.


Time (PST) Title Speaker
8.55 - 9.00 Opening Remarks Tianyi Chen (RPI)
9.00 - 9.40 Keynote #1
ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication Acceleration! Finally! [abstract] [slides]
Peter Richtarik (KAUST)
9.40 - 10.20 Keynote #2
Three Daunting Challenges of Federated Learning: Privacy Leakage, Label Deficiency, and Resource Constraints [abstract]
Salman Avestimehr (USC)
10.20 - 11.00 Keynote #3
Federated Learning for EdgeAI: New Ideas and Opportunities for Progress [abstract]
Radu Marculescu (UT Austin)
11.00 - 11.40 Keynote #4
Model Based Deep Learning with Applications to Federated Learning [abstract]
Yonina Eldar (Weizmann)
11.40 - 13.40 Live Demo Session on FedML
A tutorial followed by a live demo (an interactive session with participants to run FL in FedML platform)
Chaoyang He (FedML)
13.40 - 14.20 Keynote #5
Scalable, Heterogeneity-Aware and Trustworthy Federated Learning [abstract]
Yiran Chen (Duke)
14.20 - 15.00 Keynote #6
On Lower Bounds of Distributed Learning with Communication Compression [abstract] [slides]
Wotao Yin (Alibaba Damo)
15.00 - 17.00 Poster Session and Best Student Poster Competition
  1. Taejin Kim* (CMU), Shubhranshu Singh (CMU), Nikhil Madaan (CMU), Carlee Joe-Wong (CMU). Grey-Box Defense for Personalized Federated Learning [abstract] [poster]
  2. Ahmed M. Abdelmoniem* (QMUL). Towards Efficient and Practical Federated Learning [abstract] [poster]
  3. Zexi Li* (ZJU), Chao Wu (ZJU). Towards Effective Clustered Federated Learning: A Peer-to-peer Framework with Adaptive Neighbor Matching [abstract] [poster]
  4. Ziang Song* (JHU), Zhuolong Yu (JHU), Jingfeng Wu (JHU), Lin Yang (UCLA), Vladimir Braverman (JHU). FLLEdge: Federated Lifelong Learning on Edge Devices [abstract] [poster]
  5. Mohammad Taha Toghani* (Rice), Cesar Uribe (Rice). Scalable Average Consensus with Compressed Communications [abstract] [poster]
  6. Tian Chunlin (UM), Li Li (UM), Zhan Shi (UM), Jun Wang (UM), Cheng-Zhong Xu (UM). HARMONY: Heterogeneity-Aware Hierarchical Management for Federated Learning System [abstract] [poster]
  7. Kunjal Panchal* (UMass), Hui Guan (UMass). Flow: Fine-grained Personalized Federated Learning through Dynamic Routing [abstract] [poster]
  8. Yongbo Yu* (GMU), Fuxun Yu (GMU), Zirui Xu (GMU). Powering Multi-Task Federated Learning with Competitive GPU Resource Sharing [abstract] [poster]
  9. Yuchen Zeng* (UW Madison), Hongxu Chen (UW Madison), Kangwook Lee (UW Madison). Improving Fairness via Federated Learning [abstract] [poster]
  10. Sepehr Delpazir* (RIT), Ali Anwar (IBM Research), Nathalie Baracaldo (IBM Research), Khalil Al-Hussaeni (RIT). Understanding Resource Requirements of FL Algorithms [abstract] [poster]
  11. Xinchi Qiu* (Cambridge), Javier Fernandez-Marques (Samsung AI), Pedro Gusmao (Cambridge), Yan Gao (Newcastle), Titouan Parcollet (Oxford), Nicholas Lane (Cambridge and Samsung AI). On-device Training with Local Sparsity for FL [abstract] [poster]
  12. Shenghong Dai* (UW Madison), Kangwook Lee (UW Madison), Suman Banerjee (UW Madison). Dynamic Decentralized Federated Learning [abstract] [poster]
  13. Karthik Pansetty* (CMU), Yuhang Yao (CMU), Mohammad Mahdi Kamani (Wyze), Carlee Joe-Wong (CMU). Personalized Federated Graph Learning [abstract] [poster]

Best Paper Award:

  • Yongbo Yu* (GMU), Fuxun Yu (GMU), Zirui Xu (GMU), Xiang Chen (GMU). Powering Multi-Task Federated Learning with Competitive GPU Resource Sharing
  • Taejin Kim* (CMU), Shubhranshu Singh (CMU), Nikhil Madaan (CMU), Carlee Joe-Wong (CMU). Grey-Box Defense for Personalized Federated Learning
17.00 - 17.05 Closing Remarks TPC

Sponsors